What to Consider When Choosing a Testing Platform for Your Patient

Join the conversation #GeneticKnowledge

Blueprint Genetics

	How many genes are included in the whole exome sequencing platform?					
Number of genes	Blueprint Genetics	Lab A*	Lab B*	Lab C*	Lab D*	
	~20,000 genes	~20,000 genes	>18,000 genes	~20,000 genes	~6,700 genes	
	* information provided on laboratory websites					
	How well are the genes covered? How is this demonstrated?					

Lab B* >99.4%

at 20x

150x

Lab C*

97%

at >20x

>120x

Lab D*

~97-98%

at 10x

100x

% coverage of target regions Mean read depth

Validation study

Blueprint Genetics

99.4%-99.7%

at 20x**

174x->244x**

Yes

* information provided on laboratory websites

**lower value in publicly available validation samples of varying quality, higher value in patient samples

Why do these numbers matter? What do they really mean? What is the difference between 99.7% versus 95% coverage?

	Blueprint Genetics	Lab A	Lab B	Lab C
% coverage of target region	99.7% >20x	95% >10x	97% >20x	97.5% >10x
# bp covered <20x (or <10x)*	60,000 bp <20x	1,500,000 bp <10x	900,000 bp <20x	750,000 bp <10x
# exons/genes covered <20x (or <10x)*	414 exons 45 genes	10,345 exons 1,119 genes	6,207 exons 672 genes	5,100 exons 550 genes

Lab A*

~95% at 10x,

>98% at 1x

Not provided

*Estimates intended for illustrative purposes

	How does this translate to the clinic?				
CASE 1:	27-year-old with polydactyly and early onset retinitis pigmentosa. Previous testing,				
Blueprint Genetics results	Sequence analysis revealed two variants in the <i>BBS2</i> gene, c.1895G>C (pathogenic) and c.534+1G>T (likely pathogenic) resulting in a diagnosis of Bardet-Biedl syndrome.				
Blueprint Genetics advantage	High-quality sequencing with uniform coverage reduces the risk of false-negative results. In this case previous testing had low-coverage in some regions, resulting in a failure to detect the patient's variants.				

CASE 2:	A 12-year-old male with c strong family history of m at another lab was negati
Blueprint Genetics results	A deletion was discovere c.2426_2427del (p.[Glu80 a diagnosis of <i>RPGR</i> -relat
Blueprint Genetics advantage	Improvements to capture bioinformatic pipeline inc sequence by NGS, includ

Figure 1. The new NovaSeq technology with custom oligo design shows improved coverage in the RPGR-ORF15 region.

	What types of variants can		
	Blueprint Genetics	Lab	
Deep intronic variants	20 bps from exon- intron boundary + >1,500 disease causing deep intronic variants included	Not pr	
	* information provided on l	aboratory	
CASE 3:	A 4-year-old with bi abnormal eyelids, au analysis at another l pathogenic) which i an autosomal recess	lateral c nd mode ab revea s associ sive dise	
Blueprint Genetics results	Sequence analysis r as well as c22218 promoter. As a resu another relevant var	evealed 39del (pa It, the Bu riant was	
Blueprint Genetics advantage	More than 1,500 previously included in our panels and		

linical suspicion of X-linked retinitis pigmentosa due to a naternally related affected male relatives. Testing performed ive.

d in the retinis pigmentosa GTPase regulator (*RPGR*) gene, 09Glyfs*25), specifically in the ORF15 region. As a result, ted X-linked retinitis pigmentosa was made.

e kit, sequencing platform, mapping quality, and crease the sensitivity of variant detection in genes difficult to ling RPGR, PKD1, GBA, and others.

Figure 2. Coverage in the *RPGR*-ORF15 region using the previous NGS technology.

n be detected using this test	?
-------------------------------	---

ab A*	Lab B*	Lab C*	Lab D*
provided	Not provided	Not provided	Not provided

websites

hoanal atresia, bilateral lacrimal duct obstruction, erate unilateral conductive hearing loss. Sequence aled the genetic variant TXNL4A c.88_110del23 (likely ated with Burn-McKeown syndrome, but insufficient for ease diagnosis.

the previously described *TXNL4A* c.88_110del23 variant athogenic), a previously described 34 bp deletion in the urn-McKeown syndrome diagnosis was confirmed, and s identified.

described disease-causing deep intronic variants are whole exome sequencing.

	Blueprint Genetics	Lab A*	Lab B*	Lab C*	Lab D*	
SNV detection	99.7%	Not provided	Not provided	Not provided	~93.2%	
Indel detection	1-10 bp 96.9% 11-20 bp 98.9% 21-30 bp 100% 31-40 bp 100%	Not provided	<50 bp reliably detected	Not provided	Not provided	
CNV detection	1 exon del 92.3% 2 exon del 100% 3 exon del 93.3% Microdeletion syndromes 100%	May detect CNV 3 exons or larger.	Reliable detection of CNVs 4 exons or larger with high confidence. Not intended to detect large CNVs.	1, 2, and 3 exon CNVs ~ 70%; 4 or more exon CNVs >95%	Not provided	
	* information provided on laboratory websites SNV, single nucleotide variant; CNV, copy number variant.					
CASE 4:	An 11-month-old baby with abnormal soft tissue calcification at joints, mild global developmental delay, and failure to thrive. Parents are consanguineous and chromosomal microarray (CMA) testing was normal.					
Blueprint Genetics results	Genetic testing showed that the patient was homozygous for a one exon (~273 bp) deletion in the <i>ENPP1</i> gene, c.1091+1_1092-1_1164+1_1165-1 (likely pathogenic), while the parents are both heterozygous. The resulting diagnosis was generalized arterial calcification of infancy.					
Blueprint Genetics advantage	NGS-based CNV analysis able to detect CNV missed by CMA.					
CASE 5:	A 4-month-old with clinical and laboratory features consistent with propionic acidemia.					
Blueprint Genetics results	Sequencing analysis identified <i>PCCA</i> c.1746G>A (pathogenic). CNV analysis revealed a deletion of exons 7-18 in the <i>PCCA</i> gene. These variants, confirmed to be in trans, are consistent with a diagnosis of propionic acidemia.					
Blueprint Genetics advantage	The combination of SNV and CNV detection in one test decreases the need to resort to non-NGS deletion/duplication assays when only one SNV is identified.					

A quick and easy checklist for quality testing platforms

- High-quality sequencing platform with >20X coverage across >99.4% of targets
- Publicly available analytic validation that demonstrates sensitivity to detect SNVs, indels, and CNVs across all genes
- ✓ Inclusion of disease-causing deep intronic variants
- High-quality bioinformatics pipeline and rigorous variant interpretation
- Clinical statement that includes all data and evidence used to evaluate variants
- Competitive turnaround time and price