Renal Malformation Panel

PLUSbpg-method Plus Analysis combines Sequence + Del/Dup (CNV) Analysis providing increased diagnostic yield in certain clinical conditions, where the underlying genetic defect may be detectable by either of the analysis methods. Results in 3–4 weeks. SEQbpg-method Our Sequence Analysis is based on a proprietary targeted sequencing method OS-Seq™ and offers panels targeted for genes associated with certain phenotypes. A standard way to analyze NGS data for finding the genetic cause for Mendelian disorders. Results in 3–4 weeks. DEL/DUPbpg-method Targeted Del/Dup (CNV) analysis is used to detect bigger disease causing deletions or duplications from the disease-associated genes. Results in 3–4 weeks.

Test code: KI2001

The Blueprint Genetics Renal Malformation Panel is a 15 gene test for genetic diagnostics of patients with clinical suspicion of congenital malformations of kidney or renal tubular dysgenesis.

The panel covers autosomal dominant and autosomal recessive forms of renal anomalies.

About Renal Malformation

Renal Malformation Panel offers diagnostics for a variety of severe congenital kidney disorders. As a result of the serious health problems caused by renal tubular dysgenesis, affected individuals usually die before birth, are stillborn, or die soon after birth from respiratory failure. In particular, proximal tubules are absent or underdeveloped. Rarely, with treatment, affected individuals survive into childhood. Their blood pressure usually normalizes, but they quickly develop chronic kidney disease, which is characterized by reduced kidney function that worsens over time. Autosomal recessive form of renal tubular dysgenesis is accompanied with persistent fetal anuria and perinatal death, probably due to pulmonary hypoplasia from early-onset oligohydramnios (the Potter phenotype with facial dysmorphism with large and flat low-set ears and limb positioning defects). Absence or paucity of differentiated proximal tubules is the histopathologic hallmark of the disorder and may be associated with skull ossification defects. Congenital anomalies of the kidney and urinary tract (CAKUT) comprise a broad spectrum of renal and urinary tract malformations. CAKUT structural anomalies range from complete renal agenesis (the most severe), to renal hypodysplasia, multicystic kidney dysplasia, duplex renal collecting system, ureteropelvic junction obstruction (UPJO), megaureter, posterior urethral valves (PUV), and vesicoureteral reflux (VUR). Renal abnormalities are observed in close relatives of up to 10% of CAKUT patients, although these are frequently asymptomatic. The phenotype often does not follow classic Mendelian inheritance: family members with the same genetic defect may have variable phenotypes, ranging from severe renal insufficiency to asymptomatic anomalies. CAKUT occurs in about 1 in 500 live births, but are severe enough to cause neonatal death in about 1 in 2,000 births. In addition, CAKUT can occur in syndromic disorders in association with other congenital anomalies, such as papillorenal syndrome.

Availability

Results in 3-4 weeks. We do not offer a maternal cell contamination (MCC) test at the moment. We offer prenatal testing only for cases where the maternal cell contamination studies (MCC) are done by a local genetic laboratory. Read more: http://blueprintgenetics.com/faqs/#prenatal

Genes in the Renal Malformation Panel and their clinical significance
Gene Associated phenotypes Inheritance ClinVar HGMD
ACE ACE serum levels, Renal tubular dysgenesis AD/AR 8 48
BMP4 Microphthalmia, syndromic, Orofacial cleft AD 9 42
DSTYK Congenital anomalies of the kidney and urinary tract AD 6
EYA1 Otofaciocervical syndrome, Branchiootic syndrome, Branchiootorenal syndrome AD 33 186
FANCB Fanconi anemia XL 7 14
FOXC2 Lymphedema-distichiasis syndrome AD 14 94
FREM1 Bifid nose, Manitoba oculotrichoanal syndrome, Trigonocephaly AD/AR 8 23
GATA3 Hypomagnesemia, renal AD 16 77
HNF1B Renal cell carcinoma, nonpapillary chromophobe, Renal cysts and diabetes syndrome AD 27 194
PAX2 Isolated renal hypoplasia, Papillorenal syndrome AD 19 82
REN Hyperuricemic nephropathy AD 7 19
RET Hirschsprung disease, Central hypoventilation syndrome, congenital, Pheochromocytoma, Medullary thyroid carcinoma, Multiple endocrine neoplasia AD/AR 80 405
SIX1 Deafness, Branchiootic syndrome, Branchiootorenal syndrome AD 9 15
SIX5 Branchiootorenal syndrome AD 3 7
WT1 Denys-Drash syndrome, Frasier syndrome, Wilms tumor AD 23 165

*Some regions of the gene are duplicated in the genome leading to limited sensitivity within the regions. Thus, low-quality variants are filtered out from the duplicated regions and only high-quality variants confirmed by other methods are reported out. Read more.

Gene, refers to HGNC approved gene symbol; Inheritance to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL); ClinVar, refers to a number of variants in the gene classified as pathogenic or likely pathogenic in ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/); HGMD, refers to a number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/). The list of associated (gene specific) phenotypes are generated from CDG (http://research.nhgri.nih.gov/CGD/) or Orphanet (http://www.orpha.net/) databases.

Blueprint Genetics offers a comprehensive Renal Malformation Panel that covers classical genes associated with congenital malformations of kidney and renal tubular dysgenesis. The genes are carefully selected based on the existing scientific evidence, our experience and most current mutation databases. Candidate genes are excluded from this first-line diagnostic test. The test does not recognise balanced translocations or complex inversions, and it may not detect low-level mosaicism. The test should not be used for analysis of sequence repeats or for diagnosis of disorders caused by mutations in the mitochondrial DNA.

Analytical validation is a continuous process at Blueprint Genetics. Our mission is to improve the quality of the sequencing process and each modification is followed by our standardized validation process. Average sensitivity and specificity in Blueprint NGS Panels is 99.3% and 99.9% for detecting SNPs. Sensitivity to for indels vary depending on the size of the alteration: 1-10bps (96.0%), 11-20 bps (88.4%) and 21-30 bps (66.7%). The longest detected indel was 46 bps by sequence analysis. Detection limit for Del/Dup (CNV) analysis varies through the genome depending on exon size, sequencing coverage and sequence content. The sensitivity is 71.5% for single exon deletions and duplications and 99% for three exons’ deletions and duplications. We have validated the assays for different starting materials including EDTA-blood, isolated DNA (no FFPE) and saliva that all provide high-quality results. The diagnostic yield varies substantially depending on the used assay, referring healthcare professional, hospital and country. Blueprint Genetics’ Plus Analysis (Seq+Del/Dup) maximizes the chance to find molecular genetic diagnosis for your patient although Sequence Analysis or Del/Dup Analysis may be cost-effective first line test if your patient’s phenotype is suggestive for a specific mutation profile.

The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. The highest relevance in the reported variants is achieved through elimination of false positive findings based on variability data for thousands of publicly available human reference sequences and validation against our in-house curated mutation database as well as the most current and relevant human mutation databases. Reference databases currently used are the 1000 Genomes Project (http://www.1000genomes.org), the NHLBI GO Exome Sequencing Project (ESP; http://evs.gs.washington.edu/EVS), the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org), ClinVar database of genotype-phenotype associations (http://www.ncbi.nlm.nih.gov/clinvar) and the Human Gene Mutation Database (http://www.hgmd.cf.ac.uk). The consequence of variants in coding and splice regions are estimated using the following in silico variant prediction tools: SIFT (http://sift.jcvi.org), Polyphen (http://genetics.bwh.harvard.edu/pph2/), and Mutation Taster (http://www.mutationtaster.org).

Through our online ordering and statement reporting system, Nucleus, the customer can access specific details of the analysis of the patient. This includes coverage and quality specifications and other relevant information on the analysis. This represents our mission to build fully transparent diagnostics where the customer gains easy access to crucial details of the analysis process.

In addition to our cutting-edge patented sequencing technology and proprietary bioinformatics pipeline, we also provide the customers with the best-informed clinical report on the market. Clinical interpretation requires fundamental clinical and genetic understanding. At Blueprint Genetics our geneticists and clinicians, who together evaluate the results from the sequence analysis pipeline in the context of phenotype information provided in the requisition form, prepare the clinical statement. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals, even without training in genetics.

Variants reported in the statement are always classified using the Blueprint Genetics Variant Classification Scheme modified from the ACMG guidelines (Richards et al. 2015), which has been developed by evaluating existing literature, databases and with thousands of clinical cases analyzed in our laboratory. Variant classification forms the corner stone of clinical interpretation and following patient management decisions. Our statement also includes allele frequencies in reference populations and in silico predictions. We also provide PubMed IDs to the articles or submission numbers to public databases that have been used in the interpretation of the detected variants. In our conclusion, we summarize all the existing information and provide our rationale for the classification of the variant.

A final component of the analysis is the Sanger confirmation of the variants classified as likely pathogenic or pathogenic. This does not only bring confidence to the results obtained by our NGS solution but establishes the mutation specific test for family members. Sanger sequencing is also used occasionally with other variants reported in the statement. In the case of variant of uncertain significance (VUS) we do not recommend risk stratification based on the genetic finding. Furthermore, in the case VUS we do not recommend use of genetic information in patient management or genetic counseling. For some cases Blueprint Genetics offers a special free of charge service to investigate the role of identified VUS.

We constantly follow genetic literature adapting new relevant information and findings to our diagnostics. Relevant novel discoveries can be rapidly translated and adopted into our diagnostics without delay. These processes ensure that our diagnostic panels and clinical statements remain the most up-to-date on the market.

Find more info in Support
Download PDF

Full service only

Choose an analysis method

$ $ 1400
$ $ 1000
$ $ 1600

Extra services

Total $
Order now

ICD & CPT codes

CPT codes

SEQ81479
DEL/DUP81479


ICD codes

Commonly used ICD-10 codes when ordering the Renal Malformation Panel

ICD-10 Disease
N28 Renal tubular dysgenesis
Q63.8 Congenital malformations of kidney

Accepted sample types

  • EDTA blood, min. 1 ml
  • Purified DNA, min. 5μg
  • Saliva (Oragene DNA OG-500 kit)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

Note that we do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue.

Subscribe to our newsletter