Skeletal Dysplasias Core Panel

  • bpg-method PLUS
  • bpg-method SEQ
  • bpg-method DEL/DUP

Test code: MA3501

The Blueprint Genetics Skeletal Dysplasias Core Panel is a 107-gene test for genetic diagnostics of patients with clinical suspicion of skeletal dysplasia.

Inherited skeletal disorders are known to be sometimes difficult to differentiate from each other on clinical and radiological findings. This subpanel covers the major genes listed in the Nosology and Classification of Genetic Skeletal Disorders 2015 Revision (PMID: 26394607) for skeletal dysplasias. This panel covers common and rare skeletal dysplasias (eg. achondroplasia, COL2A1 related dysplasias, diastrophic dysplasia, various types of spondylo-metaphyeal dysplasias), various ciliopathies with major skeletal involvement (eg short rib-polydactylies, asphyxiating thoracic dysplasias and Ellis-van Creveld syndrome), various subtypes of osteogenesis imperfecta, campomelic dysplasia, slender bone dysplasias, multiple epiphydeal dysplasias, chondrodysplasia punctata group of disorders, osteopetrosis and related disorders, abnormal mineralization group of disorders (eg hypopohosphatasia), dysostoses with predominant vertebral involvement and disorders with patellar dysostoses. This panel is part of Comprehensive Skeletal / Malformation Syndrome Panel and Comprehensive Skeletal Dysplasias and Disorders Panel.

This panel includes also a pathogenic intronic variant that is often missed by exome sequencing: IFITM5 c.-14C>T (rs587776916), which practically accounts almost all cases of osteogenesis imperfecta type V (PMID 23240094). Currently, other regions of IFITM5 gene are not yet covered.

About Skeletal Dysplasias Core

This core skeletal dysplasia panel is designed to detect mutations responsible for various skeletal dysplasias. Some of the resulting skeletal dysplasias are severe and potentially lethal (such as thanatophoric dysplasia, different types of achondrogenesis, osteogenesis imperfecta type II). Other non-lethal skeletal dysplasias result in disproportionate short stature with possible other clinical findings. Achondroplasia is the most common cause of disproportionate short stature worldwide. It is characterized by rhizomelic shortening of the limbs, exaggerated lumbar lordosis, brachydactyly, and macrocephaly with frontal bossing and midface hypoplasia. Type II collagen defects (mutations in COL2A1 genes) have been identified in a spectrum of disorders ranging from perinatally lethal conditions to those with only mild arthropathy. As many different skeletal dysplasias have quite similar clinical and radiological findings, multigene panel testing would allow efficient diagnostic testing. Identification of causative mutation(s) would establish the inheritance mode in the family and enable genetic counselling of the family. In addition, identifying the causative mutation(s) provides essential information for the doctor taking care of the patient. This panel provides good diffential diagnostic power for the major genes causing skeletal dysplasias.

Availability

Results in 3-4 weeks. We do not offer a maternal cell contamination (MCC) test at the moment. We offer prenatal testing only for cases where the maternal cell contamination studies (MCC) are done by a local genetic laboratory. Read more: http://blueprintgenetics.com/faqs/#prenatal

Genes in the Skeletal Dysplasias Core Panel and their clinical significance
Gene Associated phenotypes Inheritance ClinVar HGMD
ACP5 Spondyloenchondrodysplasia with immune dysregulation AR 10 24
ADAMTS10 Weill-Marchesani syndrome AR 8 13
ADAMTSL2 Geleophysic dysplasia AR 7 26
AGPS Rhizomelic chondrodysplasia punctata type 3 AR 4 8
ALPL Odontohypophosphatasia, Hypophosphatasia perinatal lethal, infantile, juvenile and adult forms AD/AR 32 270
ANKH Calcium pyrophosphate deposition disease (familial chondrocalcinosis type 2), Craniometaphyseal dysplasia autosomal dominant type AD 12 21
ARSE* Chondrodysplasia punctata X-linked recessive, brachytelephalangic type (CDPX1) XL 16 46
B3GALT6 Spondyloepimetaphyseal dysplasia with joint laxity, Ehlers-Danlos syndrome AR 14 22
BMP1 Osteogenesis imperfecta AR 6 11
BMPR1B Acromesomelic dysplasia, Demirhan, Brachydactyly C/Symphalangism-like pheno, Brachydactyly type A2 AD/AR 11 13
CA2 Osteopetrosis, with renal tubular acidosis AR 8 30
CANT1 Desbuquois dysplasia AR 17 25
CDC6 Meier-Gorlin syndrome (Ear-patella-short stature syndrome) AR 1 3
CDKN1C Beckwith-Wiedemann syndrome, IMAGE syndrome AD 25 79
CDT1 Meier-Gorlin syndrome (Ear-patella-short stature syndrome) AR 6 8
CHST3 Spondyloepiphyseal dysplasia with congenital joint dislocations (recessive Larsen syndrome) AR 13 35
CLCN7 Osteopetrosis AD/AR 9 91
COL1A1 Ehlers-Danlos syndrome, Caffey disease, Osteogenesis imperfecta type 1, Osteogenesis imperfecta type 2, Osteogenesis imperfecta type 3, Osteogenesis imperfecta type 4 AD 120 883
COL1A2 Ehlers-Danlos syndrome, cardiac valvular form, Osteogenesis imperfecta type 1, Osteogenesis imperfecta type 2, Osteogenesis imperfecta type 3, Osteogenesis imperfecta type 4 AD/AR 79 473
COL2A1 Avascular necrosis of femoral head, Rhegmatogenous retinal detachment, Epiphyseal dysplasia, with myopia and deafness, Czech dysplasia, Achondrogenesis type 2, Platyspondylic dysplasia Torrance type, Hypochondrogenesis, Spondyloepiphyseal dysplasia congenital (SEDC), Spondyloepimetaphyseal dysplasia (SEMD) Strudwick type, Kniest dysplasia, Spondyloperipheral dysplasia, Mild SED with premature onset arthrosis, SED with metatarsal shortening, Stickler syndrome type 1 AD 106 537
COL9A1 Stickler syndrome recessive type, Multiple epiphyseal dysplasia type 6 (EDM6) AR 3 4
COL9A2 Stickler syndrome, Multiple epiphyseal dysplasia type 2 (EDM2) AD/AR 5 12
COL9A3 Multiple epihyseal dysplasia type 3 (EDM3) AD/AR 3 16
COL10A1 Metaphyseal chondrodysplasia, Schmid AD 20 50
COL11A1 Marshall syndrome, Fibrochondrogenesis, Stickler syndrome type 2 AD/AR 18 76
COL11A2 Weissenbacher-Zweymuller syndrome, Deafness, Otospondylomegaepiphyseal dysplasia, Fibrochondrogenesis, Stickler syndrome type 3 (non-ocular) AD/AR 17 51
COMP Pseudoachondroplasia, Multiple ephiphyseal dysplasia AD 33 182
CRTAP Osteogenesis imperfecta type 2, Osteogenesis imperfecta type 3, Osteogenesis imperfecta type 4 AR 11 24
CSPP1 Jeune asphyxiating thoracic dystrophy, Joubert syndrome AR 22 23
CTSK Pycnodysostosis AR 7 53
CUL7 3-M syndrome, Yakut short stature syndrome AR 18 68
CYP27B1 Vitamin D-dependent rickets AR 20 75
DHCR24 Desmosterolosis AR 6 8
DLL3 Spondylocostal dysostosis AR 9 21
DVL1 Robinow syndrome AD 9 13
DYM Dyggve-Melchior-Clausen dysplasia, Smith-McCort dysplasia AR 20 28
DYNC2H1 Short -rib thoracic dysplasia with or without polydactyly type 1, Short -rib thoracic dysplasia with or without polydactyly type 3, Asphyxiating thoracic dysplasia (ATD; Jeune), SRPS type 2 (Majewski) AR/Digenic 34 98
EBP Chondrodysplasia punctata, Male EBP disorder with neurologic defects (MEND) XL 43 89
EIF2AK3 SED, Wolcott-Rallison type AR 7 71
ENPP1 Arterial calcification, Hypophosphatemic rickets AR 17 72
ESCO2 SC phocomelia syndrome, Roberts syndrome AR 29 30
EVC Weyers acrofacial dysostosis, Ellis-van Creveld syndrome AD/AR 7 77
EVC2 Ellis-van Creveld syndrome, Weyers acrodental dysostosis AD/AR 23 66
FAM20C Hypophosphatemia, hyperphosphaturia, dental anomalies, intracerebral calcifications and osteosclerosis (Raine syndrome) AR 13 22
FGF23 Tumoral calcinosis, hyperphosphatemic, Hypophosphatemic rickets AD/AR 7 16
FGFR1 Pfeiffer syndrome, Trigonocephaly, Hypogonadotropic hypogonadism, Osteoglophonic Dwarfism - Craniostenosis, Hartsfield syndrome AD/Digenic/Multigenic 41 232
FGFR2 Apert syndrome, Pfeiffer syndrome, Jackson-Weiss syndrome, Lacrimoauriculodentodigital syndrome, Beare-Stevenson cutis gyrata syndrome, Antley-Bixler syndrome without genital anomalies or disordered steroidogenesis, Craniofacial-skeletal-dermatological dysplasia, Crouzon syndrome, Bent bone dysplasia AD 47 145
FGFR3 Lacrimoauriculodentodigital syndrome, Muenke syndrome, Crouzon syndrome with acanthosis nigricans, Camptodactyly, tall stature, and hearing loss (CATSHL) syndrome, Achondroplasia, Hypochondroplasia, Thanatophoric dysplasia type 1, Thanatophoric dysplasia type 2, SADDAN AD/AR 47 68
FKBP10 Bruck syndrome type 2, Osteogenesis imperfecta type 3, Osteogenesis imperfecta type 4 AR 17 27
FLNA Frontometaphyseal dysplasia, Osteodysplasty Melnick-Needles, Otopalatodigital syndrome type 1, Otopalatodigital syndrome type 2, Terminal osseous dysplasia with pigmentary defects XL 86 209
FLNB Larsen syndrome (dominant), Atelosteogenesis type 1, Atelosteogenesis type 3, Spondylo-carpal-tarsal dyspasia AD/AR 38 98
GDF5 Multiple synostoses syndrome, Fibular hypoplasia and complex brachydactyly, Acromesomelic dysplasia, Hunter-Thompson, Symphalangism, proximal, Chondrodysplasia, Brachydactyly type A2, Brachydactyly type C, Grebe dysplasia AD/AR 22 52
GNPAT Rhizomelic chondrodysplasia punctata, rhizomelic AR 8 14
HSPG2 Schwartz-Jampel syndrome, Dyssegmental dysplasia Silverman-Handmaker type, Dyssegmental dysplasia Rolland-Desbuquis type AD/AR 15 52
IFT80 Short -rib thoracic dysplasia with or without polydactyly, Asphyxiating thoracic dysplasia (ATD; Jeune) AR 5 7
IFT140 Short -rib thoracic dysplasia with or without polydactyly, Asphyxiating thoracic dysplasia (ATD; Jeune) AR 14 46
IFT172 Retinitis pigmentosa, Short -rib thoracic dysplasia with or without polydactyly, Asphyxiating thoracic dysplasia (ATD; Jeune) AR 18 21
IHH Acrocapitofemoral dysplasia, Brachydactyly, Syndactyly type Lueken AD/AR 11 17
IKBKG* Incontinentia pigmenti, Ectodermal, dysplasia, anhidrotic, lymphedema and immunodeficiency, Immunodeficiency, Invasive pneumococcal disease, recurrent, isolated, Osteopetrosis with ectodermal dysplasia and immune defect (OLEDAID) XL 30 141
KAT6B Ohdo syndrome, SBBYS variant, Genitopatellar syndrome AD 23 53
LBR Pelger-Huet anomaly, Reynolds syndrome, Greenberg/HEM skeletal dysplasia, Hydrops-ectopic calcification-moth-eaten skeletal dysplasia AD 15 22
LIFR Stuve-Wiedemann dysplasia, Schwartz-Jampel type 2 syndrome AR 9 28
LMX1B Nail-patella syndrome AD 18 190
LRP5* Van Buchem disease, Osteoporosis-pseudoglioma syndrome, Hyperostosis, endosteal, Osteosclerosis, Exudative vitreoretinopathy, Osteopetrosis late-onset form type 1, LRP5 primary osteoporosis AD/AR/Digenic 36 163
LTBP2 Weill-Marchesani syndrome, Microspherophakia and/or megalocornea, with ectopia lentis and with or without secondary glaucoma, Glaucoma, primary congenital AR 21 23
MATN3 Spondyloepimetaphyseal dysplasia Matrilin type, Multiple epiphyseal dysplasia type 5 (EDM5) AD/AR 8 25
MMP9 Metaphyseal anadysplasia AR 1 12
NEK1 Short -rib thoracic dysplasia with or without polydactyly, SRPS type 2 (Majewski) AR/Digenic 8 10
NPR2 Acromesomelic dysplasia type Maroteaux, Epiphyseal chondrodysplasia, Miura, Short stature with nonspecific skeletal abnormalities AD/AR 14 61
OBSL1 3-M syndrome AR 9 22
ORC1 Meier-Gorlin syndrome (Ear-patella-short stature syndrome) AR 9 9
ORC4 Meier-Gorlin syndrome (Ear-patella-short stature syndrome) AR 13 5
ORC6 Meier-Gorlin syndrome (Ear-patella-short stature syndrome) AR 5 5
P3H1 Osteogenesis imperfecta AR 12 33
PAPSS2 Brachyolmia 4 with mild epiphyseal and metaphyseal changes, SEMD PAPPS2 type AR 10 21
PCNT Microcephalic osteodysplastic primordial dwarfism AR 30 82
PEX7 Refsum disease, Rhizomelic CDP type 1 AR 17 51
PHEX Hypophosphatemic rickets XL 75 411
PLOD2 Bruck syndrome, Osteogenesis imperfecta type 3 AR 4 11
PPIB Osteogenesis imperfecta type 2, Osteogenesis imperfecta type 3, Osteogenesis imperfecta type 4 AR 6 11
PTH1R Metaphyseal chondrodysplasia Jansen type, Failure of tooth eruption, Eiken dysplasia, Blomstrand dysplasia AD/AR 13 40
RMRP Cartilage-hair hypoplasia, Metaphyseal dysplasia without hypotrichosis, Anauxetic dysplasia AR 24 119
RNU4ATAC Roifman syndrome, Microcephalic osteodysplastic primordial dwarfism type 1, Microcephalic osteodysplastic primordial dwarfism type 3 AR 15 18
ROR2 Robinow syndrome recessive type, Brachydactyly type B AD/AR 18 37
RUNX2 Cleidocranial dysplasia, Metaphyseal dysplasia with maxillary hypoplasia AD 19 203
SBDS* Aplastic anemia, Shwachman-Diamond syndrome, Severe spondylometaphyseal dysplasia AD/AR 12 88
SERPINF1 Osteogenesis imperfecta type 3, Osteogenesis imperfecta type 4 AR 7 29
SERPINH1 Osteogenesis imperfecta type 3 AR 3 5
SHOX* Leri-Weill dyschondrosteosis, Langer mesomelic dysplasia, Short stature XL/PAR 23 366
SLC26A2 Diastrophic dysplasia, Atelosteogenesis type 2, De la Chapelle dysplasia, Recessive Multiple Epiphyseal dysplasia, Achondrogenesis type 1B AR 32 51
SLC34A3 Hypophosphatemic rickets with hypercalciuria AR 10 36
SLC39A13 Spondylodysplastic Ehlers-Danlos syndrome AR 2 7
SMAD4 Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome, Polyposis, juvenile intestinal, Myhre dysplasia, Hereditary hemorrhagic telangiectasia AD 119 128
SMARCAL1 Schimke immunoosseous dysplasia AR 9 70
SOX9 Campomelic dysplasia, 46,XY sex reversal, Brachydactyly with anonychia (Cooks syndrome) AD 24 135
TCIRG1 Osteopetrosis, severe neonatal or infantile forms (OPTB1) AR 9 127
TGFB1 Diaphyseal dysplasia Camurati-Engelmann AD 11 28
TNFRSF11A Familial expansile osteolysis, Paget disease of bone, Osteopetrosis, severe neonatal or infantile forms (OPTB1) AD/AR 8 22
TNFRSF11B Paget disease of bone, juvenile AR 8 21
TRAPPC2* Spondyloepiphyseal dysplasia tarda XL 12 54
TRPV4 Metatropic dysplasia, Spondyloepiphyseal dysplasia Maroteaux type, Parastremmatic dwarfism, Hereditary motor and sensory neuropathy, Spondylometaphyseal dysplasia Kozlowski type, Spinal muscular atrophy, Charcot-Marie-Tooth disease, Brachyolmia (autosomal dominant type), Familial Digital arthropathy with brachydactyly AD 53 71
TTC21B Short-rib thoracic dysplasia, Nephronophthisis, Asphyxiating thoracic dysplasia (ATD; Jeune) AR 6 47
VDR Vitamin D-dependent rickets AD/AR 17 67
WDR19 Retinitis pigmentosa, Nephronophthisis, Short -rib thoracic dysplasia with or without polydactyly, Senior-Loken syndrome, Cranioectodermal dysplasia (Levin-Sensenbrenner) type 1, Cranioectodermal dysplasia (Levin-Sensenbrenner) type 2, Asphyxiating thoracic dysplasia (ATD; Jeune) AD/AR 16 25
WDR35 Cranioectodermal dysplasia (Levin-Sensenbrenner) type 1, Cranioectodermal dysplasia (Levin-Sensenbrenner) type 2, Short rib-polydactyly syndrome type 5 AR 15 24
WISP3 Arthropathy, progressive pseudorheumatoid, of childhood, Spondyloepiphyseal dysplasia tarda with progressive arthropathy AR 13 68
WNT5A Robinow syndrome AD 5 5

*Some regions of the gene are duplicated in the genome leading to limited sensitivity within the regions. Thus, low-quality variants are filtered out from the duplicated regions and only high-quality variants confirmed by other methods are reported out. Read more.

Gene, refers to HGNC approved gene symbol; Inheritance to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL); ClinVar, refers to a number of variants in the gene classified as pathogenic or likely pathogenic in ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/); HGMD, refers to a number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/). The list of associated (gene specific) phenotypes are generated from CDG (http://research.nhgri.nih.gov/CGD/) or Orphanet (http://www.orpha.net/) databases.

Gene Genomic location HG19 HGVS RefSeq RS-number Comment Reference
IFITM5 Chr11:299504 c.-14C>T NM_001025295.2 rs587776916 Explain almost all cases of OI type V PMID 23240094
SLC26A2 Chr5:149340544 c.-26+2T>C NM_000112.3 rs386833492

The strengths of this test include:

  • Blueprint Genetics is one of the few laboratories worldwide with CAP and ISO-15189 accreditation for NGS panels and CLIA certification
  • Superior sequencing quality
  • Careful selection of genes based on current literature, our experience and the most current mutation databases
  • Transparent and easy access to quality and performance data at the patient level that are accessible via our Nucleus portal
  • Transparent and reproducible analytical validation for each panel (see Test performance section; for complete details, see our Analytic Validation)
  • Sequencing and high resolution del/dup analysis available in one test
  • Inclusion of non-coding disease causing variants where clinically indicated (please see individual Panel descriptions)
  • Interpretation of variants following ACMG variant classification guidelines
  • Comprehensive clinical statement co-written by a PhD geneticist and a clinician specialist

 

This test does not detect the following:

  • Complex inversions
  • Gene conversions
  • Balanced translocations
  • Mitochondrial DNA variants
  • Variants in regulatory or non-coding regions of the gene unless otherwise indicated (please see Non-coding disease causing variants covered by the panel). This mean for instance intronic variants locating deeper than 15 nucleotides from the exon-intron boundary.

 

This test may not reliably detect the following:

  • Low level mosaicism
  • Stretches of mononucleotide repeats
  • Indels larger than 50bp
  • Single exon deletions or duplications
  • Variants within pseudogene regions/duplicated segments
  • Disorders caused by long repetitive sequences (e.g. trinucleotide repeat expansions)

 

The sensitivity of this test may be reduced if DNA is extracted by a laboratory other than Blueprint Genetics.

For additional information, please refer to the Test performance section and see our Analytic Validation.

Blueprint Genetics offers a comprehensive Skeletal Dysplasias Core Panel that covers classical genes associated with skeletal dysplasia. The genes are carefully selected based on the existing scientific evidence, our experience and most current mutation databases. Candidate genes are excluded from this first-line diagnostic test. The test does not recognise balanced translocations or complex inversions, and it may not detect low-level mosaicism. The test should not be used for analysis of sequence repeats or for diagnosis of disorders caused by mutations in the mitochondrial DNA.

Analytical validation is a continuous process at Blueprint Genetics. Our mission is to improve the quality of the sequencing process and each modification is followed by our standardized validation process. Average sensitivity and specificity in Blueprint NGS Panels is 99.3% and 99.9% for detecting SNPs. Sensitivity to for indels vary depending on the size of the alteration: 1-10bps (96.0%), 11-20 bps (88.4%) and 21-30 bps (66.7%). The longest detected indel was 46 bps by sequence analysis. Detection limit for Del/Dup (CNV) analysis varies through the genome depending on exon size, sequencing coverage and sequence content. The sensitivity is 71.5% for single exon deletions and duplications and 99% for three exons’ deletions and duplications. We have validated the assays for different starting materials including EDTA-blood, isolated DNA (no FFPE) and saliva that all provide high-quality results. The diagnostic yield varies substantially depending on the used assay, referring healthcare professional, hospital and country. Blueprint Genetics’ Plus Analysis (Seq+Del/Dup) maximizes the chance to find molecular genetic diagnosis for your patient although Sequence Analysis or Del/Dup Analysis may be cost-effective first line test if your patient’s phenotype is suggestive for a specific mutation profile.

The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. The highest relevance in the reported variants is achieved through elimination of false positive findings based on variability data for thousands of publicly available human reference sequences and validation against our in-house curated mutation database as well as the most current and relevant human mutation databases. Reference databases currently used are the 1000 Genomes Project (http://www.1000genomes.org), the NHLBI GO Exome Sequencing Project (ESP; http://evs.gs.washington.edu/EVS), the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org), ClinVar database of genotype-phenotype associations (http://www.ncbi.nlm.nih.gov/clinvar) and the Human Gene Mutation Database (http://www.hgmd.cf.ac.uk). The consequence of variants in coding and splice regions are estimated using the following in silico variant prediction tools: SIFT (http://sift.jcvi.org), Polyphen (http://genetics.bwh.harvard.edu/pph2/), and Mutation Taster (http://www.mutationtaster.org).

Through our online ordering and statement reporting system, Nucleus, the customer can access specific details of the analysis of the patient. This includes coverage and quality specifications and other relevant information on the analysis. This represents our mission to build fully transparent diagnostics where the customer gains easy access to crucial details of the analysis process.

In addition to our cutting-edge patented sequencing technology and proprietary bioinformatics pipeline, we also provide the customers with the best-informed clinical report on the market. Clinical interpretation requires fundamental clinical and genetic understanding. At Blueprint Genetics our geneticists and clinicians, who together evaluate the results from the sequence analysis pipeline in the context of phenotype information provided in the requisition form, prepare the clinical statement. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals, even without training in genetics.

Variants reported in the statement are always classified using the Blueprint Genetics Variant Classification Scheme modified from the ACMG guidelines (Richards et al. 2015), which has been developed by evaluating existing literature, databases and with thousands of clinical cases analyzed in our laboratory. Variant classification forms the corner stone of clinical interpretation and following patient management decisions. Our statement also includes allele frequencies in reference populations and in silico predictions. We also provide PubMed IDs to the articles or submission numbers to public databases that have been used in the interpretation of the detected variants. In our conclusion, we summarize all the existing information and provide our rationale for the classification of the variant.

A final component of the analysis is the Sanger confirmation of the variants classified as likely pathogenic or pathogenic. This does not only bring confidence to the results obtained by our NGS solution but establishes the mutation specific test for family members. Sanger sequencing is also used occasionally with other variants reported in the statement. In the case of variant of uncertain significance (VUS) we do not recommend risk stratification based on the genetic finding. Furthermore, in the case VUS we do not recommend use of genetic information in patient management or genetic counseling. For some cases Blueprint Genetics offers a special free of charge service to investigate the role of identified VUS.

We constantly follow genetic literature adapting new relevant information and findings to our diagnostics. Relevant novel discoveries can be rapidly translated and adopted into our diagnostics without delay. These processes ensure that our diagnostic panels and clinical statements remain the most up-to-date on the market.

Find more info in Support

Choose an analysis method

$ $ 1700
$ $ 1000
$ $ 1900
Total $
Order now

ICD & CPT codes

CPT codes

SEQ 81479
DEL/DUP 81479

Accepted sample types

  • EDTA blood, min. 1 ml
  • Purified DNA, min. 5μg
  • Saliva (Oragene DNA OG-500 kit)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

Note that we do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue.

Subscribe to our newsletter