Marfan Syndrome Panel

Summary
Is a 36 gene panel that includes assessment of non-coding variants.

Is ideal for patients with a clinical suspicion of Marfan syndrome or a related disorder.

Analysis methods
  • PLUS
Availability
4 weeks
Number of genes
36
Test code
CA0801
Panel tier
Tier 1

Summary

The Blueprint Genetics Marfan Syndrome Panel (test code CA0801):

Read about our accreditations, certifications and CE-marked IVD medical devices here.

ICD Codes

Refer to the most current version of ICD-10-CM manual for a complete list of ICD-10 codes.

Sample Requirements

  • Blood (min. 1ml) in an EDTA tube
  • Extracted DNA, min. 2 μg in TE buffer or equivalent
  • Saliva (Please see Sample Requirements for accepted saliva kits)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

We do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue. In addition, if the patient is affected with a hematological malignancy, DNA extracted from a non-hematological source (e.g. skin fibroblasts) is strongly recommended.

Please note that, in rare cases, mitochondrial genome (mtDNA) variants may not be detectable in blood or saliva in which case DNA extracted from post-mitotic tissue such as skeletal muscle may be a better option.

Read more about our sample requirements here.

The diagnosis of Marfan syndrome can be difficult as many of the features are also identified in normal population, features may appear in an age-dependent manner and there is substantial phenotypic variability between patients. There is also considerable overlap with other connective-tissue disorders such as Loeys-Dietz syndrome (LDS), Ehlers-Danlos syndromes, arterial tortuosity syndrome, Shprintzen-Goldberg syndrome and congenital contractural arachnodactyly (CCA). The Marfan Syndrome Panel is designed as a genetic diagnostic tool for patients with clinical features of Marfan syndrome. The two major features of Marfan syndrome are vision problems caused by a dislocated lens (ectopia lentis) in one or both eyes and arterial aneurysms and dissection involving especially aorta. Aortic aneurysm and dissection can be life threatening. Mitral valve regurgitation is another cardiovascular issue associated with disorder. Individuals with Marfan syndrome are usually tall and slender, have elongated fingers and toes, and have an arm span that exceeds their body height. Other common features include crowded teeth, a long and narrow face, dural ectasia, an abnormal curvature of the spine, and chest abnormalities. The features of Marfan syndrome can become apparent anytime between infancy and adulthood. Depending on the age of diagnosis and severity of symptoms, Marfan syndrome can be fatal early in life; however, the majority of affected individuals survive into mid- to late adulthood.

Genes in the Marfan Syndrome Panel and their clinical significance

To view complete table content, scroll horizontally.

Gene Associated phenotypes Inheritance ClinVar HGMD
ABL1 Congenital heart defects and skeletal malformations syndrome (CHDSKM) AD 30 5
ADAMTS10 Weill-Marchesani syndrome AR 8 14
ADAMTS17 Weill-Marchesani-like syndrome AR 6 7
ADAMTSL4 Ectopia lentis, isolated AR 11 27
AEBP1 AR 5 4
B3GAT3#* Multiple joint dislocations, short stature, craniofacial dysmorphism, and congenital heart defects AR 6 13
BGN Spondyloepimetaphyseal dysplasia, X-linked, Meester-Loeys syndrome XL 8 7
CBS Homocystinuria due to cystathionine beta-synthase deficiency AR 88 205
COL11A1 Marshall syndrome, Fibrochondrogenesis, Stickler syndrome type 2, Deafness AD/AR 34 94
COL11A2 Weissenbacher-Zweymuller syndrome, Deafness, Otospondylomegaepiphyseal dysplasia, Fibrochondrogenesis, Stickler syndrome type 3 (non-ocular) AD/AR 29 57
COL1A1 Ehlers-Danlos syndrome, Caffey disease, Osteogenesis imperfecta type 1, Osteogenesis imperfecta type 2, Osteogenesis imperfecta type 3, Osteogenesis imperfecta type 4 AD 352 962
COL1A2 Ehlers-Danlos syndrome, cardiac valvular form, Osteogenesis imperfecta type 1, Osteogenesis imperfecta type 2, Osteogenesis imperfecta type 3, Osteogenesis imperfecta type 4 AD/AR 186 509
COL2A1 Avascular necrosis of femoral head, Rhegmatogenous retinal detachment, Epiphyseal dysplasia, with myopia and deafness, Czech dysplasia, Achondrogenesis type 2, Platyspondylic dysplasia Torrance type, Hypochondrogenesis, Spondyloepiphyseal dysplasia congenital (SEDC), Spondyloepimetaphyseal dysplasia (SEMD) Strudwick type, Kniest dysplasia, Spondyloperipheral dysplasia, Mild SED with premature onset arthrosis, SED with metatarsal shortening, Stickler syndrome type 1 AD/AR 180 561
COL3A1 Ehlers-Danlos syndrome AD 520 631
COL5A1 Ehlers-Danlos syndrome AD 101 154
COL5A2 Ehlers-Danlos syndrome AD 24 35
DLG4 Intellectual developmental disorder AD 7 10
EFEMP2 Cutis laxa AR 14 16
FBN1 MASS syndrome, Marfan syndrome, Acromicric dysplasia, Geleophysic dysplasia 2 AD 1465 2679
FBN2 Congenital contractural arachnodactyly (Beals syndrome) AD 50 97
FLCN Birt-Hogg-Dube syndrome, Pneumothorax, primary spontaneous AD 154 210
LOX Aortic aneurysm, familial thoracic 10 AD 6 7
MAT2A* Complement system AD/AR 2
MED12 Ohdo syndrome, Intellectual disability with Marfanoid habitus, FG syndrome, Opitz-Kaveggia syndrome, Lujan-Fryns syndrome XL 29 30
PLOD1 Ehlers-Danlos syndrome AR 30 41
SKI Shprintzen-Goldberg syndrome AD 20 23
SLC2A10 Arterial tortuosity syndrome AR 23 34
SMAD3 Aneurysms-osteoarthritis syndrome, Loeys-Dietz syndrome AD 48 82
SMAD6 Craniosynostosis 7 AD 5 38
TGFB2 Loeys-Dietz syndrome AD 36 38
TGFB3 Loeys-Dietz syndrome (Reinhoff syndrome), Arrhythmogenic right ventricular dysplasia AD 19 26
TGFBR1 Loeys-Dietz syndrome AD 40 69
TGFBR2 Loeys-Dietz syndrome AD 58 139
UPF3B Intellectual disability, syndromic XL 9 21
VCAN Wagner disease AD 11 19
ZDHHC9 Mental retardation, syndromic, Raymond XL 9 14
#

The gene has suboptimal coverage (means <90% of the gene’s target nucleotides are covered at >20x with mapping quality score (MQ>20) reads), and/or the gene has exons listed under Test limitations section that are not included in the panel as they are not sufficiently covered with high quality sequence reads.

*

Some, or all, of the gene is duplicated in the genome. Read more.

The sensitivity to detect variants may be limited in genes marked with an asterisk (*) or number sign (#). Due to possible limitations these genes may not be available as single gene tests.

Gene refers to the HGNC approved gene symbol; Inheritance refers to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR), mitochondrial (mi), X-linked (XL), X-linked dominant (XLD) and X-linked recessive (XLR); ClinVar refers to the number of variants in the gene classified as pathogenic or likely pathogenic in this database (ClinVar); HGMD refers to the number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD). The list of associated, gene specific phenotypes are generated from CGD or Mitomap databases.

Non-coding variants covered by Marfan Syndrome Panel

To view complete table content, scroll horizontally.

Gene Genomic location HG19 HGVS RefSeq RS-number
CBS Chr21:44496326 c.-86_-85+8delAGGTAGAAGA NM_001178008.1
COL11A1 Chr1:103386637 c.3744+437T>G NM_080629.2
COL11A1 Chr1:103488576 c.1027-24A>G NM_080629.2
COL11A1 Chr1:103491958 c.781-450T>G NM_080629.2 rs587782990
COL1A1 Chr17:48266910 c.2668-11T>G NM_000088.3 rs786205505
COL1A1 Chr17:48267594 c.2451+94G>T NM_000088.3
COL1A1 Chr17:48267611 c.2451+77C>T NM_000088.3 rs72651665
COL1A1 Chr17:48268147 c.2343+31T>A NM_000088.3
COL1A1 Chr17:48272201 c.1354-12G>A NM_000088.3 rs72648337
COL1A1 Chr17:48273368 c.1003-43_1003-32delTGCCATCTCTTC NM_000088.3 rs72645359
COL1A1 Chr17:48273574 c.958-18_958-15delTTCC NM_000088.3 rs72645351
COL1A1 Chr17:48273742 c.904-14G>A NM_000088.3
COL1A1 Chr17:48273743 c.904-15T>A NM_000088.3
COL1A2 Chr7:94025130 c.70+717A>G NM_000089.3 rs72656354
COL1A2 Chr7:94030856 c.226-22_226-11delTTTTTTTTTTTT NM_000089.3
COL2A1 Chr12:48379984 c.1527+135G>A NM_001844.4
COL3A1 Chr2:189872183 c.3256-43T>G NM_000090.3 rs587779667
COL5A1 Chr9:137645685 c.1720-11T>A NM_000093.4 rs863223444
COL5A1 Chr9:137680989 c.2647-12A>G NM_000093.4
COL5A1 Chr9:137686903 c.2701-25T>G NM_000093.4 rs765079080
COL5A1 Chr9:137726806 c.5137-11T>A NM_000093.4 rs183495554
COL5A2 Chr2:189927655 c.1924-11T>C NM_000393.3
FBN1 Chr15:48707358 c.8051+375G>T NM_000138.4
FBN1 Chr15:48720682 c.6872-14A>G NM_000138.4
FBN1 Chr15:48721629 c.6872-961A>G NM_000138.4
FBN1 Chr15:48739106 c.5672-87A>G NM_000138.4
FBN1 Chr15:48739107 c.5672-88A>G NM_000138.4
FBN1 Chr15:48764885 c.4211-32_4211-13delGAAGAGTAACGTGTGTTTCT NM_000138.4
FBN1 Chr15:48786466 c.2678-15C>A NM_000138.4
FBN1 Chr15:48802380 c.1589-14A>G NM_000138.4
FBN1 Chr15:48818478 c.863-26C>T NM_000138.4
FBN2 Chr5:127670560 c.3974-24A>C NM_001999.3
FBN2 Chr5:127670562 c.3974-26T>G NM_001999.3
FBN2 Chr5:127671284 c.3725-15A>G NM_001999.3
TGFB3 Chr14:76425035 c.*495C>T NM_003239.2 rs387906514
TGFB3 Chr14:76447266 c.-30G>A NM_003239.2 rs770828281
TGFBR2 Chr3:30648317 c.-59C>T NM_001024847.2

Test Strengths

The strengths of this test include:

  • CAP accredited laboratory
  • CLIA-certified personnel performing clinical testing in a CLIA-certified laboratory
  • Powerful sequencing technologies, advanced target enrichment methods and precision bioinformatics pipelines ensure superior analytical performance
  • Careful construction of clinically effective and scientifically justified gene panels
  • Some of the panels include the whole mitochondrial genome (please see the Panel Content section)
  • Our Nucleus online portal providing transparent and easy access to quality and performance data at the patient level
  • ~2,000 non-coding disease causing variants in our clinical grade NGS assay for panels (please see ‘Non-coding disease causing variants covered by this panel’ in the Panel Content section)
  • Our rigorous variant classification scheme
  • Our systematic clinical interpretation workflow using proprietary software enabling accurate and traceable processing of NGS data
  • Our comprehensive clinical statements

Test Limitations

The following exons are not included in the panel as they are not sufficiently covered with high quality sequence reads: *B3GAT3* (NM_001288722:5). Genes with suboptimal coverage in our assay are marked with number sign (#) and genes with partial, or whole gene, segmental duplications in the human genome are marked with an asterisk (*) if they overlap with the UCSC pseudogene regions. Gene is considered to have suboptimal coverage when >90% of the gene’s target nucleotides are not covered at >20x with mapping quality score (MQ>20) reads. The technology may have limited sensitivity to detect variants in genes marked with these symbols (please see the Panel content table above).

This test does not detect the following:

  • Complex inversions
  • Gene conversions
  • Balanced translocations
  • Some of the panels include the whole mitochondrial genome but not all (please see the Panel Content section)
  • Repeat expansion disorders unless specifically mentioned
  • Non-coding variants deeper than ±20 base pairs from exon-intron boundary unless otherwise indicated (please see above Panel Content / non-coding variants covered by the panel).

This test may not reliably detect the following:

  • Low level mosaicism in nuclear genes (variant with a minor allele fraction of 14.6% is detected with 90% probability)
  • Stretches of mononucleotide repeats
  • Low level heteroplasmy in mtDNA (>90% are detected at 5% level)
  • Indels larger than 50bp
  • Single exon deletions or duplications
  • Variants within pseudogene regions/duplicated segments
  • Some disease causing variants present in mtDNA are not detectable from blood, thus post-mitotic tissue such as skeletal muscle may be required for establishing molecular diagnosis.

The sensitivity of this test may be reduced if DNA is extracted by a laboratory other than Blueprint Genetics.

For additional information, please refer to the Test performance section.

The genes on the panel have been carefully selected based on scientific literature, mutation databases and our experience.

Our panels are sectioned from our high-quality, clinical grade NGS assay. Please see our sequencing and detection performance table for details regarding our ability to detect different types of alterations (Table).

Assays have been validated for various sample types including EDTA-blood, isolated DNA (excluding from formalin fixed paraffin embedded tissue), saliva and dry blood spots (filter cards). These sample types were selected in order to maximize the likelihood for high-quality DNA yield. The diagnostic yield varies depending on the assay used, referring healthcare professional, hospital and country. Plus analysis increases the likelihood of finding a genetic diagnosis for your patient, as large deletions and duplications cannot be detected using sequence analysis alone. Blueprint Genetics’ Plus Analysis is a combination of both sequencing and deletion/duplication (copy number variant (CNV)) analysis.

The performance metrics listed below are from an initial validation performed at our main laboratory in Finland. The performance metrics of our laboratory in Marlborough, MA, are equivalent.

Performance of Blueprint Genetics high-quality, clinical grade NGS sequencing assay for panels.

Sensitivity % (TP/(TP+FN) Specificity %
Single nucleotide variants 99.89% (99,153/99,266) >99.9999%
Insertions, deletions and indels by sequence analysis
1-10 bps 99.2% (7,745/7,806) >99.9999%
11-50 bps 99.13% (2,524/2,546) >99.9999%
Copy number variants (exon level dels/dups)
1 exon level deletion (heterozygous) 100% (20/20) NA
1 exon level deletion (homozygous) 100% (5/5) NA
1 exon level deletion (het or homo) 100% (25/25) NA
2-7 exon level deletion (het or homo) 100% (44/44) NA
1-9 exon level duplication (het or homo) 75% (6/8) NA
Simulated CNV detection
5 exons level deletion/duplication 98.7% 100.00%
Microdeletion/-duplication sdrs (large CNVs, n=37))
Size range (0.1-47 Mb) 100% (25/25)
     
The performance presented above reached by Blueprint Genetics high-quality, clinical grade NGS sequencing assay with the following coverage metrics
     
Mean sequencing depth 143X
Nucleotides with >20x sequencing coverage (%) 99.86%

Performance of Blueprint Genetics Mitochondrial Sequencing Assay.

Sensitivity % Specificity %
ANALYTIC VALIDATION (NA samples; n=4)
Single nucleotide variants
Heteroplasmic (45-100%) 100.0% (50/50) 100.0%
Heteroplasmic (35-45%) 100.0% (87/87) 100.0%
Heteroplasmic (25-35%) 100.0% (73/73) 100.0%
Heteroplasmic (15-25%) 100.0% (77/77) 100.0%
Heteroplasmic (10-15%) 100.0% (74/74) 100.0%
Heteroplasmic (5-10%) 100.0% (3/3) 100.0%
Heteroplasmic (<5%) 50.0% (2/4) 100.0%
CLINICAL VALIDATION (n=76 samples)
All types
Single nucleotide variants n=2026 SNVs
Heteroplasmic (45-100%) 100.0% (1940/1940) 100.0%
Heteroplasmic (35-45%) 100.0% (4/4) 100.0%
Heteroplasmic (25-35%) 100.0% (3/3) 100.0%
Heteroplasmic (15-25%) 100.0% (3/3) 100.0%
Heteroplasmic (10-15%) 100.0% (9/9) 100.0%
Heteroplasmic (5-10%) 92.3% (12/13) 99.98%
Heteroplasmic (<5%) 88.9% (48/54) 99.93%
Insertions and deletions by sequence analysis n=40 indels
Heteroplasmic (45-100%) 1-10bp 100.0% (32/32) 100.0%
Heteroplasmic (5-45%) 1-10bp 100.0% (3/3) 100.0%
Heteroplasmic (<5%) 1-10bp 100.0% (5/5) 99,997%
SIMULATION DATA /(mitomap mutations)
Insertions, and deletions 1-24 bps by sequence analysis; n=17
Homoplasmic (100%) 1-24bp 100.0% (17/17) 99.98%
Heteroplasmic (50%) 100.0% (17/17) 99.99%
Heteroplasmic (25%) 100.0% (17/17) 100.0%
Heteroplasmic (20%) 100.0% (17/17) 100.0%
Heteroplasmic (15%) 100.0% (17/17) 100.0%
Heteroplasmic (10%) 94.1% (16/17) 100.0%
Heteroplasmic (5%) 94.1% (16/17) 100.0%
Copy number variants (separate artifical mutations; n=1500)
Homoplasmic (100%) 500 bp, 1kb, 5 kb 100.0% 100.0%
Heteroplasmic (50%) 500 bp, 1kb, 5 kb 100.0% 100.0%
Heteroplasmic (30%) 500 bp, 1kb, 5 kb 100.0% 100.0%
Heteroplasmic (20%) 500 bp, 1kb, 5 kb 99.7% 100.0%
Heteroplasmic (10%) 500 bp, 1kb, 5 kb 99.0% 100.0%
The performance presented above reached by following coverage metrics at assay level (n=66)
Mean of medians Median of medians
Mean sequencing depth MQ0 (clinical) 18224X 17366X
Nucleotides with >1000x MQ0 sequencing coverage (%) (clinical) 100%
rho zero cell line (=no mtDNA), mean sequencing depth 12X

The target region for each gene includes coding exons and ±20 base pairs from the exon-intron boundary. In addition, the panel includes non-coding and regulatory variants if listed above (Non-coding variants covered by the panel). Some regions of the gene(s) may be removed from the panel if specifically mentioned in the ‘Test limitations” section above. If the test includes the mitochondrial genome the target region gene list contains the mitochondrial genes. The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. Our pipeline is streamlined to maximize sensitivity without sacrificing specificity. We have incorporated a number of reference population databases and mutation databases including, but not limited, to 1000 Genomes Project, gnomAD, ClinVar and HGMD into our clinical interpretation software to make the process effective and efficient. For missense variants, in silico variant prediction tools such as  SIFT, PolyPhen,MutationTaster are used to assist with variant classification. Through our online ordering and statement reporting system, Nucleus, ordering providers have access to the details of the analysis, including patient specific sequencing metrics, a gene level coverage plot and a list of regions with suboptimal coverage (<20X for nuclear genes and <1000X for mtDNA) if applicable. This reflects our mission to build fully transparent diagnostics where ordering providers can easily visualize the crucial details of the analysis process.

We provide customers with comprehensive clinical report available on the market. Clinical interpretation requires a fundamental understanding of clinical genetics and genetic principles. At Blueprint Genetics, our Ph.D. molecular geneticists, medical professionals, and other highly experienced experts prepare clinical reports by evaluating the identified variants in the context of the phenotypic information provided in the requisition form.

Our goal is to provide clinically meaningful reports that are understandable for all medical professionals regardless of whether they have formal training in genetics. Variant classification is the cornerstone of clinical interpretation and resulting patient management decisions. Our classifications follow the ACMG guideline 2015. Sequence and copy number variants classified as pathogenic, likely pathogenic, and variants of uncertain significance (VUS) are confirmed using bidirectional Sanger sequencing or by orthogonal methods such as qPCR/ddPCR when they do not meet our stringent NGS quality metrics for a true positive call.

Our clinical report includes tables for sequence and copy number variants that include basic variant information (genomic coordinates, HGVS nomenclature, zygosity, allele frequencies, in silico predictions, phenotypes, and classification of the variant). In addition, the statement includes detailed descriptions of the variant, gene, and phenotype(s), including the role of the specific gene in human disease, the mutation profile, information about the gene’s variation in population cohorts, and detailed information about related phenotypes. We also provide links to the references, abstracts, and variant databases used to help ordering providers further evaluate the reported findings if desired.

The panel report is divided into primary findings and additional findings sections. Variants reported as primary findings are known disease-causing variants or rare variants that could potentially explain the patient’s phenotype as described to the laboratory at the time of interpretation. The conclusion summarizes all the existing information and provides our rationale for the classification of the variant.

Variants reported as additional findings are variants that are not likely or sufficient to cause the tested patient’s phenotype, based on the current knowledge. Additional findings in panel reports include variants that are, for example, carrierships of single heterozygous variants in genes associated with autosomal recessive disorders, variants of uncertain significance in genes associated with autosomal dominant disorders (if pathogenic or likely pathogenic variants considered sufficient to explain the patient’s phenotype are reported as primary findings), or risk alleles identified in genes included in the panel.

Identification of pathogenic or likely pathogenic variants in dominant disorders or their combinations in different alleles in recessive disorders are considered molecular confirmation of the clinical diagnosis. In these cases, family member testing can be used for risk stratification. We do not recommend using variants of uncertain significance (VUS) for family member risk stratification or patient management. Genetic counseling is recommended.

Our interpretation team analyzes millions of variants from thousands of individuals with rare diseases. Our internal database and our understanding of variants and related phenotypes increases with every case analyzed. Our laboratory is therefore well positioned to reclassify previously reported variants as new information becomes available. If a variant previously reported as a primary or secondary finding by Blueprint Genetics is reclassified so that it becomes diagnostic (VUS to P/LP) or earlier molecular diagnosis is removed (P/LP to VUS, LB, B), our laboratory will issue a follow-up statement to the original ordering healthcare provider at no additional cost.