Aorta Panel
Updated

Last modified: May 13, 2019

Summary

  • Is a 51 gene panel that includes assessment of non-coding variants
  • Is ideal for patients who have isolated or syndromic aortic disease presenting with ascending aortic dilatation, aneurysm or dissection.

Analysis methods

  •  The great majority of tests are completed within 28 days. Panels can be customized by adding genes from any of our panel genes or by removing genes from the selected panel. Ordering a single gene or panel for your patient allows you the option to Expand to Exome for up to two years after the initial test results were reported.">
  • PLUS
  • SEQ
  • DEL/DUP

Availability

4 weeks

Number of genes

51

Test code

CA1001

Panel size

Small

CPT codes

SEQ 81410
DEL/DUP 81411

Summary

The Blueprint Genetics Aorta Panel (test code CA1001):

ICD codes

Commonly used ICD-10 code(s) when ordering the Aorta Panel

ICD-10 Disease
I71.00 Aortic dissection, thoracic aorta
Q87.40 Marfan syndrome
Q87.89 Loeys-Dietz syndrome
Q87.89 Shprintzen-Goldberg syndrome
Q79.6 Ehlers-Danlos syndrome
Q87.89 Arterial tortuosity syndrome
Q87.89 Congenital contractural arachnodactyly
I71.2 Aortic aneurysm, thoracic aorta
I71.1 Aortic aneurysm, ruptured, thoracic aorta
I71.3 Aortic aneurysm, ruptured, abdominal aorta
I71.8 Aortic aneurysm, ruptured, unspecific site

Sample Requirements

  • Blood (min. 1ml) in an EDTA tube
  • Extracted DNA, min. 2 μg in TE buffer or equivalent
  • Saliva (Oragene DNA OG-500 kit/OGD-500 or OG-575 & OGD-575)

Label the sample tube with your patient's name, date of birth and the date of sample collection.

Note that we do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue. Read more about our sample requirements here.

Aortic dilatation is defined by a diameter larger than 110% of reference value determined by age, sex, and body surface area. Progressing aortic dilatation eventually fulfills the definition of aortic aneurysm, which is a local aortic diameter higher than 150% of reference value. Usually aortic aneurysm formation is driven by reduced elastin content and fragmentation with concomitant smooth muscle cell loss, a process called cystic medial degeneration. Although this process is seen normally as a consequence of aging, it is accelerated in aortic aneurysm diseases. Most aortic aneurysms are associated with non-syndromic dilatation. However, at least 20% of aortic aneurysms are in the context of syndromic diseases such as Marfan syndrome (MfS), Loeys-Dietz syndrome (LDS), Shprintzen-Goldberg syndrome (SGS) and Ehlers-Danlos syndromes (EDS). Individuals with aortic aneurysms are at risk of sudden cardiac death due to rupture and dissection.

Genes in the Aorta Panel and their clinical significance

Gene Associated phenotypes Inheritance ClinVar HGMD
ABCC6* Pseudoxanthoma elasticum AR 352 377
ABL1 Congenital heart defects and skeletal malformations syndrome (CHDSKM) AD 30 5
ACTA2 Aortic aneurysm, familial thoracic, Moyamoya disease, Multisystemic smooth muscle dysfunction syndrome AD 20 76
ADAMTS10 Weill-Marchesani syndrome AR 8 14
ADAMTS17 Weill-Marchesani-like syndrome AR 6 7
ADAMTS2 Ehlers-Danlos syndrome AR 8 11
ADAMTSL4 Ectopia lentis, isolated AR 11 27
ALDH18A1 Spastic paraplegia, Cutis laxa AD/AR 22 30
ATP7A Menkes disease, Occipital horn syndrome, Spinal muscular atrophy, distal, X-linked 3 XL 116 354
B3GAT3* Multiple joint dislocations, short stature, craniofacial dysmorphism, and congenital heart defects AR 6 13
BGN Spondyloepimetaphyseal dysplasia, X-linked, Meester-Loeys syndrome XL 8 7
CBS Homocystinuria due to cystathionine beta-synthase deficiency AR 88 205
COL1A1 Ehlers-Danlos syndrome, Caffey disease, Osteogenesis imperfecta type 1, Osteogenesis imperfecta type 2, Osteogenesis imperfecta type 3, Osteogenesis imperfecta type 4 AD 352 962
COL1A2 Ehlers-Danlos syndrome, cardiac valvular form, Osteogenesis imperfecta type 1, Osteogenesis imperfecta type 2, Osteogenesis imperfecta type 3, Osteogenesis imperfecta type 4 AD/AR 186 509
COL2A1 Avascular necrosis of femoral head, Rhegmatogenous retinal detachment, Epiphyseal dysplasia, with myopia and deafness, Czech dysplasia, Achondrogenesis type 2, Platyspondylic dysplasia Torrance type, Hypochondrogenesis, Spondyloepiphyseal dysplasia congenital (SEDC), Spondyloepimetaphyseal dysplasia (SEMD) Strudwick type, Kniest dysplasia, Spondyloperipheral dysplasia, Mild SED with premature onset arthrosis, SED with metatarsal shortening, Stickler syndrome type 1 AD 180 561
COL3A1 Ehlers-Danlos syndrome AD 520 631
COL4A5 Alport syndrome XL 704 992
COL5A1 Ehlers-Danlos syndrome AD 101 154
COL5A2 Ehlers-Danlos syndrome AD 24 35
EFEMP2 Cutis laxa AR 14 16
ELN Cutis laxa, Supravalvular aortic stenosis AD 78 113
ENPP1 Arterial calcification, Hypophosphatemic rickets AR 22 72
FBLN5 Cutis laxa, Macular degeneration, age-related AD/AR 13 22
FBN1 MASS syndrome, Marfan syndrome, Acromicric dysplasia, Geleophysic dysplasia AD 1465 2679
FBN2 Congenital contractural arachnodactyly (Beals syndrome) AD 50 97
FKBP14 Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss AR 5 6
FLNA Frontometaphyseal dysplasia, Osteodysplasty Melnick-Needles, Otopalatodigital syndrome type 1, Otopalatodigital syndrome type 2, Terminal osseous dysplasia with pigmentary defects XL 133 257
FOXE3 Aphakia, congenital primary, Anterior segment mesenchymal dysgenesis, Cataract 34, Aortic aneurysm, familial thoracic AR/AD 9 29
GATA5 Familial atrial fibrillation, Tetralogy of Fallot, Single ventricular septal defect AD 5 32
HCN4 Sick sinus syndrome, Brugada syndrome, Left ventricular non-compaction cardiomyopathy (LVNC) AD 8 34
LOX Aortic aneurysm, familial thoracic 10 6 7
MAT2A* Complement system AD/AR 2
MED12 Ohdo syndrome, Mental retardation, with Marfanoid habitus, FG syndrome, Opitz-Kaveggia syndrome, Lujan-Fryns syndrome XL 29 30
MFAP5 Aortic aneurysm, familial thoracic AD 2 3
MYH11 Aortic aneurysm, familial thoracic AD 16 48
MYLK Aortic aneurysm, familial thoracic 7 AD 16 28
NOTCH1 Aortic valve disease AD 56 96
PLOD1 Ehlers-Danlos syndrome AR 30 41
PRKG1 Aortic aneurysm, familial thoracic 8 AD 2 3
SKI Shprintzen-Goldberg syndrome AD 20 23
SLC2A10 Arterial tortuosity syndrome AR 23 34
SLC39A13 Spondylodysplastic Ehlers-Danlos syndrome AR 2 9
SMAD2 AD 4 13
SMAD3 Aneurysms-osteoarthritis syndrome, Loeys-Dietz syndrome AD 48 82
SMAD4 Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome, Polyposis, juvenile intestinal, Myhre dysplasia, Hereditary hemorrhagic telangiectasia AD 179 143
SMAD6 Craniosynostosis 7 AD 5 38
TGFB2 Loeys-Dietz syndrome AD 36 38
TGFB3 Loeys-Dietz syndrome (Reinhoff syndrome), Arrhythmogenic right ventricular dysplasia AD 19 26
TGFBR1 Loeys-Dietz syndrome AD 40 69
TGFBR2 Loeys-Dietz syndrome AD 58 139
ZDHHC9 Mental retardation, syndromic, Raymond XL 9 14

* Some, or all, of the gene is duplicated in the genome. Read more.

# The gene has suboptimal coverage (means <90% of the gene’s target nucleotides are covered at >20x with mapping quality score (MQ>20) reads).

The sensitivity to detect variants may be limited in genes marked with an asterisk (*) or number sign (#)

Gene refers to the HGNC approved gene symbol; Inheritance refers to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR), X-linked (XL), X-linked dominant (XLD) and X-linked recessive (XLR); ClinVar refers to the number of variants in the gene classified as pathogenic or likely pathogenic in this database (ClinVar); HGMD refers to the number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD). The list of associated, gene specific phenotypes are generated from CGD or Orphanet databases.

Non-coding variants covered by Aorta Panel

Gene Genomic location HG19 HGVS RefSeq RS-number
ABCC6 Chr16:16281097 c.1780-29T>A NM_001171.5 rs72664206
ATP7A ChrX:77279056 c.2916+2480T>G NM_000052.5
ATP7A ChrX:77287843 c.3294+763C>G NM_000052.5
COL1A1 Chr17:48267594 c.2451+94G>T NM_000088.3
COL1A1 Chr17:48267611 c.2451+77C>T NM_000088.3 rs72651665
COL1A1 Chr17:48268147 c.2343+31T>A NM_000088.3
COL1A1 Chr17:48272201 c.1354-12G>A NM_000088.3 rs72648337
COL1A1 Chr17:48273742 c.904-14G>A NM_000088.3
COL1A2 Chr7:94025130 c.70+717A>G NM_000089.3 rs72656354
COL2A1 Chr12:48379984 c.1527+135G>A NM_001844.4
COL3A1 Chr2:189872183 c.3256-43T>G NM_000090.3 rs587779667
COL4A5 ChrX:107813924 c.385-719G>A NM_033380.2 rs104886396
COL4A5 ChrX:107816787 c.466-17T>G NM_033380.2 rs104886415
COL4A5 ChrX:107816792 c.466-12G>A NM_033380.2 rs104886414
COL4A5 ChrX:107838719 c.1424-20T>A NM_033380.2 rs281874668
COL4A5 ChrX:107849958 c.2245-14T>A NM_033380.2
COL4A5 ChrX:107852872 c.2395+2750A>G NM_033380.2
COL4A5 ChrX:107933678 c.4529-2300T>G NM_033380.2
COL4A5 ChrX:107935633 c.4529-345A>G NM_033380.2
COL4A5 ChrX:107938272 c.4821+121T>C NM_033380.2 rs104886423
COL4A5 ChrX:107938346 c.4822-151_4822-150insT NM_033380.2 rs397515494
COL5A1 Chr9:137680989 c.2647-12A>G NM_000093.4
COL5A1 Chr9:137686903 c.2701-25T>G NM_000093.4 rs765079080
COL5A1 Chr9:137726806 c.5137-11T>A NM_000093.4 rs183495554
ELN Chr7:73480347 c.2272+20C>G NM_001278939.1
FBN1 Chr15:48707358 c.8051+375G>T NM_000138.4
FBN1 Chr15:48720682 c.6872-14A>G NM_000138.4
FBN1 Chr15:48721629 c.6872-961A>G NM_000138.4
FBN1 Chr15:48739106 c.5672-87A>G NM_000138.4
FBN1 Chr15:48739107 c.5672-88A>G NM_000138.4
FBN1 Chr15:48818478 c.863-26C>T NM_000138.4
FBN2 Chr5:127670560 c.3974-24A>C NM_001999.3
FBN2 Chr5:127670562 c.3974-26T>G NM_001999.3
FBN2 Chr5:127671284 c.3725-15A>G NM_001999.3
GATA5 Chr20:61051165 c.-201A>G NM_080473.4
TGFB3 Chr14:76425035 c.*495C>T NM_003239.2 rs387906514
TGFB3 Chr14:76447266 c.-30G>A NM_003239.2 rs770828281
TGFBR2 Chr3:30648317 c.-59C>T NM_001024847.2

Added and removed genes from the panel

Genes added Genes removed
ATP7A
B3GAT3
COL4A5
FOXE3
HCN4
LOX
MED12
MYLK
PRKG1
SMAD4
ZDHHC9
ZNF469

Test strength

The strengths of this test include:
  • CAP and ISO-15189 accreditations covering all operations at Blueprint Genetics including all Whole Exome Sequencing, NGS panels and confirmatory testing
  • CLIA-certified personnel performing clinical testing in a CLIA-certified laboratory
  • Powerful sequencing technologies, advanced target enrichment methods and precision bioinformatics pipelines ensure superior analytical performance
  • Careful construction of clinically effective and scientifically justified gene panels
  • Our Nucleus online portal providing transparent and easy access to quality and performance data at the patient level
  • Our publically available analytic validation demonstrating complete details of test performance
  • ~1,500 non-coding disease causing variants in Blueprint WES assay (please see below ‘Non-coding disease causing variants covered by this panel’)
  • Our rigorous variant classification based on modified ACMG variant classification scheme
  • Our systematic clinical interpretation workflow using proprietary software enabling accurate and traceable processing of NGS data
  • Our comprehensive clinical statements

Test limitations

Genes with partial, or whole gene, segmental duplications in the human genome are marked with an asterisk (*) if they overlap with the UCSC pseudogene regions. The technology may have limited sensitivity to detect variants in genes marked with these symbols (please see the Panel content table above).

This test does not detect the following:
  • Complex inversions
  • Gene conversions
  • Balanced translocations
  • Mitochondrial DNA variants
  • Repeat expansion disorders unless specifically mentioned
  • Non-coding variants deeper than ±20 base pairs from exon-intron boundary unless otherwise indicated (please see above Panel Content / non-coding variants covered by the panel).

This test may not reliably detect the following:

  • Low level mosaicism (variant with a minor allele fraction of 14.6% is detected with 90% probability)
  • Stretches of mononucleotide repeats
  • Indels larger than 50bp
  • Single exon deletions or duplications
  • Variants within pseudogene regions/duplicated segments

The sensitivity of this test may be reduced if DNA is extracted by a laboratory other than Blueprint Genetics.

For additional information, please refer to the Test performance section and see our Analytic Validation.

The Blueprint Genetics aorta panel covers classical genes associated with aortic dissection, thoracic aorta, Marfan syndrome, Loeys-Dietz syndrome, Shprintzen-Goldberg syndrome, Ehlers-Danlos syndrome, Arterial tortuosity syndrome, congenital contractural arachnodactyly, aortic aneurysm, thoracic aorta, aortic aneurysm, ruptured, thoracic aorta, aortic aneurysm, ruptured, abdominal aorta and aortic aneurysm, ruptured, unspecific site. The genes on the panel have been carefully selected based on scientific literature, mutation databases and our experience.

Our panels are sliced from our high-quality whole exome sequencing data. Please see our sequencing and detection performance table for different types of alterations at the whole exome level (Table).

Assays have been validated for different starting materials including EDTA-blood, isolated DNA (no FFPE), saliva and dry blood spots (filter card) and all provide high-quality results. The diagnostic yield varies substantially depending on the assay used, referring healthcare professional, hospital and country. Blueprint Genetics’ Plus Analysis (Seq+Del/Dup) maximizes the chance to find a molecular genetic diagnosis for your patient although Sequence Analysis or Del/Dup Analysis may be a cost-effective first line test if your patient’s phenotype is suggestive of a specific mutation type.

Performance of Blueprint Genetics Whole Exome Sequencing (WES) assay. All individual panels are sliced from WES data.

Sensitivity % (TP/(TP+FN) Specificity %
Single nucleotide variants 99.65% (412,456/413,893) >99.99%
Insertions, deletions and indels by sequence analysis
1-10 bps 96.94% (17,070/17,608) >99.99%
11-50 bps 99.07% (957/966) >99.99%
Copy number variants (exon level dels/dups)
Clinical samples (small CNVs, n=52)
1 exon level deletion 92.3% (24/26) NA
2 exons level deletion/duplication 100.0% (11/11) NA
3-7 exons level deletion/duplication 93.3% (14/15) NA
Microdeletion/-duplication sdrs (large CNVs, n=37))
Size range (0.1-47 Mb) 100% (37/37)
Simulated CNV detection
2 exons level deletion/duplication 90.98% (7,357/8,086) 99.96%
5 exons level deletion/duplication 98.63% (7,975/8,086) 99.98%
     
The performance presented above reached by WES with the following coverage metrics
     
Mean sequencing depth at exome level 174x
Nucleotides with >20x sequencing coverage (%) 99.4%

Bioinformatics

The target region for each gene includes coding exons and ±20 base pairs from the exon-intron boundary. In addition, the panel includes non-coding variants if listed above (Non-coding variants covered by the panel). Some regions of the gene(s) may be removed from the panel if specifically mentioned in the ‘Test limitations” section above. The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. Our pipeline is streamlined to maximize sensitivity without sacrificing specificity. We have incorporated a number of reference population databases and mutation databases such as, but not limited, to 1000 Genomes Project, gnomAD, ClinVar and HGMD into our clinical interpretation software to make the process effective and efficient. For missense variants, in silico variant prediction tools such as SIFT, PolyPhen, MutationTaster are used to assist with variant classification. Through our online ordering and statement reporting system, Nucleus, the customer has an access to details of the analysis, including patient specific sequencing metrics, a gene level coverage plot and a list of regions with inadequate coverage if present. This reflects our mission to build fully transparent diagnostics where customers have easy access to crucial details of the analysis process.

Clinical interpretation

We provide customers with the most comprehensive clinical report available on the market. Clinical interpretation requires a fundamental understanding of clinical genetics and genetic principles. At Blueprint Genetics, our PhD molecular geneticists, medical geneticists and clinical consultants prepare the clinical statement together by evaluating the identified variants in the context of the phenotypic information provided in the requisition form. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals regardless of whether they have formal training in genetics.

Variant classification is the corner stone of clinical interpretation and resulting patient management decisions. Our classifications follow the Blueprint Genetics Variant Classification Schemes based on the ACMG guideline 2015. Minor modifications were made to increase reproducibility of the variant classification and improve the clinical validity of the report. Our experience with tens of thousands of clinical cases analyzed at our laboratory allowed us to further develop the industry standard.

The final step in the analysis is orthogonal confirmation. Sequence variants classified as pathogenic, likely pathogenic and variants of uncertain significance (VUS) are confirmed using bi-directional Sanger sequencing when they do not meet our stringent NGS quality metrics for a true positive call.
Reported copy number variations with a size <10 exons are confirmed by orthogonal methods such as qPCR if the specific CNV has been seen less than three times at Blueprint Genetics (Plus analysis only).

Our clinical statement includes tables for sequencing and copy number variants that include basic variant information (genomic coordinates, HGVS nomenclature, zygosity, allele frequencies, in silico predictions, OMIM phenotypes and classification of the variant). In addition, the statement includes detailed descriptions of the variant, gene and phenotype(s) including the role of the specific gene in human disease, the mutation profile, information about the gene’s variation in population cohorts and detailed information about related phenotypes. We also provide links to the references used, congress abstracts and mutation databases to help our customers further evaluate the reported findings if desired. The conclusion summarizes all of the existing information and provides our rationale for the classification of the variant.

Identification of pathogenic or likely pathogenic variants in dominant disorders or their combinations in different alleles in recessive disorders are considered molecular confirmation of the clinical diagnosis. In these cases, family member testing can be used for risk stratification within the family. In the case of variants of uncertain significance (VUS), we do not recommend family member risk stratification based on the VUS result. Furthermore, in the case of VUS, we do not recommend the use of genetic information in patient management or genetic counseling.

Our interpretation team analyzes millions of variants from thousands of individuals with rare diseases. Thus, our database, and our understanding of variants and related phenotypes, is growing by leaps and bounds. Our laboratory is therefore well positioned to re-classify previously reported variants as new information becomes available. If a variant previously reported by Blueprint Genetics is re-classified, our laboratory will issue a follow-up statement to the original ordering health care provider at no additional cost.