Autoinflammatory Syndrome Panel

Last modified: Jun 12, 2018

Summary

  • Is a 32 gene panel that includes assessment of non-coding variants
  • Is ideal for patients with a clinical suspicion of an autoinflammatory syndrome. Genes on this Panel are included on the Primary Immunodeficiency Panel.

Analysis methods

  • PLUS
  • SEQ
  • DEL/DUP

Availability

3-4 weeks

Number of genes

32

Test code

IM0201

CPT codes

SEQ 81401
SEQ 81402
DEL/DUP 81479
SEQ 81479

Summary

The Blueprint Genetics Autoinflammatory Syndrome Panel (test code IM0201):

  • Is a 32 gene panel that includes assessment of selected non-coding disease-causing variants
  • Is available as PLUS analysis (sequencing analysis and deletion/duplication analysis), sequencing analysis only or deletion/duplication analysis only

ICD codes

Commonly used ICD-10 code(s) when ordering the Autoinflammatory Syndrome Panel

ICD-10 Disease
E85.0 Familial Mediterranean fever (FMF)
E85.0 Hyperimmunoglobulinemia D with periodic fever syndrome (HIDS)
E85.0 Tumor necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS)
E85.0 Muckle-Wells syndrome (MWS)
E85.0 Familial cold autoinflammatory syndrome 2 (FCAS2)
E85.0 Cryopyrin-associated periodic syndromes (CAPS)
E85.0 Chronic infantile neurologic cutaneous articular syndrome (CINCA)

Sample Requirements

  • EDTA blood, min. 1 ml
  • Purified DNA, min. 3μg
  • Saliva (Oragene DNA OG-500 kit)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

Note that we do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue.

Autoinflammatory syndromes are a group of diseases characterized by recurrent episodes of inflammation without evidence of auto-antigen exposure. Episodes can occur periodically or irregularly. Hereditary periodic fevers are typical examples of diseases within this group. In addition to fever and localized inflammation, these diseases may cause other syndrome-specific symptoms. Familial Mediterranean fever (FMF) is the most common of periodic fever syndromes having a prevalence of 1:250 to 1:1,000 in different populations. It is the most common in the eastern Mediterranean region. Other syndromes are much rarer. The penetrance of periodic fever syndromes varies – it is high in some specific diseases, but may be reduced in others. Also, the inheritance models vary being typically autosomal recessive for example for familial Mediterranean fever and mevalonic aciduria, while it is autosomal dominant for tumor necrosis factor receptor-associated periodic syndrome and for familial cold autoinflammatory syndrome.

Genes in the Autoinflammatory Syndrome Panel and their clinical significance

Gene Associated phenotypes Inheritance ClinVar HGMD
ACP5 Spondyloenchondrodysplasia with immune dysregulation AR 11 26
ADAR Dyschromatosis symmetrica hereditaria, Aicardi-Goutières syndrome AD/AR 24 211
CARD14 Psoriasis AD 9 26
DDX58 Singleton-Merten syndrome AD 4 2
ELANE Neutropenia AD 38 215
IFIH1 Singleton-Merten syndrome, Aicardi-Goutieres syndrome 7 AD 13 17
IL1RN Osteomyelitis, sterile multifocal, with periostitis and pustulosis AR 6 13
IL36RN Pustular psoriasis, generalized AR 6 23
ISG15 Immunodeficiency, with basal ganglia calcification AR 3 3
LPIN2 Majeed syndrome AR 9 12
MEFV Familial Mediterranean fever AD/AR 27 178
MVK Mevalonic aciduria, Hyper-IgD syndrome, Porokeratosis 3, multiple types AR 30 180
NLRC4 Autoinflammation with infantile enterocolitis (AIFEC), Familial cold autoinflammatory syndrome 4 AD 6 7
NLRP1 Palmoplantar carcinoma, multiple self-healing, Autoinflammation with arthritis and dyskeratosis AD 6 15
NLRP3 Neonatal onset multisystem inflammatory disease (NOMID), Muckle-Wells syndrome, Chronic infantile neurologic cutaneous articular (CINCA) syndrome, Familial cold-induced autoinflammatory syndrome 1 AD 22 129
NLRP12 Familial cold autoinflammatory syndrome AD 3 11
NOD2 Blau syndrome, Sarcoidosis, early-onset AD/AR 12 63
OTULIN Autoinflammation, panniculitis, and dermatosis syndrome (AIPDS) AR 7 3
PLCG2 Familial cold autoinflammatory syndrome 3 (PLAID), Autoinflammation, antibody deficiency, and immune dysregulation syndrome (APLAID) AD 7 9
PSENEN Acne inversa, familial, 2 AD 7 15
PSMB8 Nakajo-Nishimura syndrome, Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature syndrome, Autoinflammation, lipodystrophy, and dermatosis syndrome, Joint contractures, muscular atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome AR 4 9
PSTPIP1 Pyogenic sterile arthritis, pyoderma gangrenosum, and acne AD 5 28
RNASEH2A Aicardi-Goutières syndrome AR 13 21
RNASEH2B Aicardi-Goutières syndrome AR 13 40
RNASEH2C Aicardi-Goutières syndrome AR 6 14
SAMHD1 Aicardi-Goutières syndrome, Chilblain lupus 2 AR 23 55
SLC29A3 Histiocytosis-lymphadenopathy plus syndrome, Dysosteosclerosis AR 16 24
TMEM173 STING-associated vasculopathy, infantile-onsent (SAVI) AD 3 10
TNFAIP3 Autoinflammatory syndrome, familial, Behcet-like AD 8 12
TNFRSF1A Periodic fever (TNF receptor-associated periodic syndrome) AD 20 104
TREX1 Vasculopathy, retinal, with cerebral leukodystrophy, Chilblain lupus, Aicardi-Goutières syndrome AD/AR 30 68
TRNT1 Retinitis pigmentosa and erythrocytic microcytosis AR 13 26

Gene refers to the HGNC approved gene symbol; Inheritance refers to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR), X-linked (XL), X-linked dominant (XLD) and X-linked recessive (XLR); ClinVar refers to the number of variants in the gene classified as pathogenic or likely pathogenic in this database (ClinVar); HGMD refers to the number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD). The list of associated, gene specific phenotypes are generated from CGD or Orphanet databases.

Non-coding variants covered by the panel

Gene Genomic location HG19 HGVS RefSeq RS-number
MEFV Chr16:3306969 c.-382C>G NM_000243.2
RNASEH2B Chr13:51501530 c.65-13G>A NM_024570.3
TNFRSF1A Chr12:6443045 c.194-14G>A NM_001065.3 rs104895241
TRNT1 Chr3:3188088 c.609-26T>C NM_182916.2

Added and removed genes from the panel

Genes added Genes removed
NLRC4
NLRP1
OTULIN
PSENEN
SLC29A3
TNFAIP3
TRNT1

Test strength

The strengths of this test include:
  • CAP and ISO-15189 accreditations covering all operations at Blueprint Genetics including all Whole Exome Sequencing, NGS panels and confirmatory testing
  • CLIA-certified personnel performing clinical testing in a CLIA-certified laboratory
  • Powerful sequencing technologies, advanced target enrichment methods and precision bioinformatics pipelines ensure superior analytical performance
  • Careful construction of clinically effective and scientifically justified gene panels
  • Our Nucleus online portal providing transparent and easy access to quality and performance data at the patient level
  • Our publically available analytic validation demonstrating complete details of test performance
  • ~1,500 non-coding disease causing variants in Blueprint WES assay (please see below ‘Non-coding disease causing variants covered by this panel’)
  • Our rigorous variant classification based on modified ACMG variant classification scheme
  • Our systematic clinical interpretation workflow using proprietary software enabling accurate and traceable processing of NGS data
  • Our comprehensive clinical statements

Test limitations

This test does not detect the following:
  • Complex inversions
  • Gene conversions
  • Balanced translocations
  • Mitochondrial DNA variants
  • Repeat expansion disorders unless specifically mentioned
  • Non-coding variants deeper than ±20 base pairs from exon-intron boundary unless otherwise indicated (please see above Panel Content / non-coding variants covered by the panel).

This test may not reliably detect the following:

  • Low level mosaicism
  • Stretches of mononucleotide repeats
  • Indels larger than 50bp
  • Single exon deletions or duplications
  • Variants within pseudogene regions/duplicated segments

The sensitivity of this test may be reduced if DNA is extracted by a laboratory other than Blueprint Genetics.

For additional information, please refer to the Test performance section and see our Analytic Validation.

The Blueprint Genetics autoinflammatory syndrome panel covers classical genes associated with familial Mediterranean fever (FMF), Hyperimmunoglobulinemia D with periodic fever syndrome (HIDS), Tumor necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS), Muckle-Wells syndrome (MWS), Familial cold autoinflammatory syndrome 2 (FCAS2), Cryopyrin-associated periodic syndromes (CAPS), Chronic infantile neurologic cutaneous articular syndrome (CINCA), neonatal-onset multisystem inflammatory disease (NOMID), Blau syndrome, deficiency of interleukin 1 receptor antagonist, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), Pyogenic arthritis, pyoderma gangrenosum and acne syndrome, deficiency of interleukin 36 receptor antagonist, pediatric granulomatous arthritis, congenital neutropenia and cyclic neutropenia. The genes on the panel have been carefully selected based on scientific literature, mutation databases and our experience.

Our panels are sliced from our high-quality whole exome sequencing data. Please see our sequencing and detection performance table for different types of alterations at the whole exome level (Table).

Assays have been validated for different starting materials including EDTA-blood, isolated DNA (no FFPE), saliva and dry blood spots (filter card) and all provide high-quality results. The diagnostic yield varies substantially depending on the assay used, referring healthcare professional, hospital and country. Blueprint Genetics’ Plus Analysis (Seq+Del/Dup) maximizes the chance to find a molecular genetic diagnosis for your patient although Sequence Analysis or Del/Dup Analysis may be a cost-effective first line test if your patient’s phenotype is suggestive of a specific mutation type.

Performance of Blueprint Genetics Whole Exome Sequencing (WES) assay. All individual panels are sliced from WES data.

Sensitivity % (TP/(TP+FN) Specificity %
Single nucleotide variants 99.65% (412,456/413,893) >99.99%
Insertions, deletions and indels by sequence analysis
1-10 bps 96.94% (17,070/17,608) >99.99%
11-50 bps 99.07% (957/966) >99.99%
Copy number variants (exon level dels/dups)
Clinical samples (small CNVs, n=52)
1 exon level deletion 92.3% (24/26) NA
2 exons level deletion/duplication 100.0% (11/11) NA
3-7 exons level deletion/duplication 93.3% (14/15) NA
Microdeletion/-duplication sdrs (large CNVs, n=37))
Size range (0.1-47 Mb) 100% (37/37)
Simulated CNV detection
2 exons level deletion/duplication 90.98% (7,357/8,086) 99.96%
5 exons level deletion/duplication 98.63% (7,975/8,086) 99.98%
     
The performance presented above reached by WES with the following coverage metrics
     
Mean sequencing depth at exome level 174x
Nucleotides with >20x sequencing coverage (%) 99.4%

Bioinformatics

The target region for each gene includes coding exons and ±20 base pairs from the exon-intron boundary. In addition, the panel includes non-coding variants if listed above (Non-coding variants covered by the panel). Some regions of the gene(s) may be removed from the panel if specifically mentioned in the ‘Test limitations” section above. The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. Our pipeline is streamlined to maximize sensitivity without sacrificing specificity. We have incorporated a number of reference population databases and mutation databases such as, but not limited, to 1000 Genomes Project, gnomAD, ClinVar and HGMD into our clinical interpretation software to make the process effective and efficient. For missense variants, in silico variant prediction tools such as SIFT, PolyPhen, MutationTaster are used to assist with variant classification. Through our online ordering and statement reporting system, Nucleus, the customer has an access to details of the analysis, including patient specific sequencing metrics, a gene level coverage plot and a list of regions with inadequate coverage if present. This reflects our mission to build fully transparent diagnostics where customers have easy access to crucial details of the analysis process.

Clinical interpretation

We provide customers with the most comprehensive clinical report available on the market. Clinical interpretation requires a fundamental understanding of clinical genetics and genetic principles. At Blueprint Genetics, our PhD molecular geneticists, medical geneticists and clinical consultants prepare the clinical statement together by evaluating the identified variants in the context of the phenotypic information provided in the requisition form. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals regardless of whether they have formal training in genetics.

Variant classification is the corner stone of clinical interpretation and resulting patient management decisions. Our classifications follow the Blueprint Genetics Variant Classification Schemes based on the ACMG guideline 2015. Minor modifications were made to increase reproducibility of the variant classification and improve the clinical validity of the report. Our experience with tens of thousands of clinical cases analyzed at our laboratory allowed us to further develop the industry standard.

The final step in the analysis of sequence variants is confirmation of variants classified as pathogenic or likely pathogenic using bi-directional Sanger sequencing. Variant(s) fulfilling all of the following criteria are not Sanger confirmed: 1) the variant quality score is above the internal threshold for a true positive call, 2) an unambiguous IGV in-line with the variant call and 3) previous Sanger confirmation of the same variant at least three times at Blueprint Genetics. Reported variants of uncertain significance are confirmed with bi-directional Sanger sequencing only if the quality score is below our internally defined quality score for true positive call. Reported copy number variations with a size <10 exons are confirmed by orthogonal methods such as qPCR if the specific CNV has been seen less than three times at Blueprint Genetics.

Our clinical statement includes tables for sequencing and copy number variants that include basic variant information (genomic coordinates, HGVS nomenclature, zygosity, allele frequencies, in silico predictions, OMIM phenotypes and classification of the variant). In addition, the statement includes detailed descriptions of the variant, gene and phenotype(s) including the role of the specific gene in human disease, the mutation profile, information about the gene’s variation in population cohorts and detailed information about related phenotypes. We also provide links to the references used, congress abstracts and mutation databases to help our customers further evaluate the reported findings if desired. The conclusion summarizes all of the existing information and provides our rationale for the classification of the variant.

Identification of pathogenic or likely pathogenic variants in dominant disorders or their combinations in different alleles in recessive disorders are considered molecular confirmation of the clinical diagnosis. In these cases, family member testing can be used for risk stratification within the family. In the case of variants of uncertain significance (VUS), we do not recommend family member risk stratification based on the VUS result. Furthermore, in the case of VUS, we do not recommend the use of genetic information in patient management or genetic counseling. For eligible cases, Blueprint Genetics offers a no charge service to investigate the role of reported VUS (VUS Clarification Service).

Our interpretation team analyzes millions of variants from thousands of individuals with rare diseases. Thus, our database, and our understanding of variants and related phenotypes, is growing by leaps and bounds. Our laboratory is therefore well positioned to re-classify previously reported variants as new information becomes available. If a variant previously reported by Blueprint Genetics is re-classified, our laboratory will issue a follow-up statement to the original ordering health care provider at no additional cost.