Limb Malformations Panel

Summary
Is a 50 gene panel that includes assessment of non-coding variants.

Is ideal for patients with congenital limb reduction defects or split hand / foot anomalies that can be isolated or syndromic.

Analysis methods
  • PLUS
Availability
4 weeks
Number of genes
50
Test code
MA4001
Panel tier
Tier 1
CPT Code *
81167, 81216, 81307, 81405, 81407, 81479
* The CPT codes provided are based on AMA guidelines and are for informational purposes only. CPT coding is the sole responsibility of the billing party. Please direct any questions regarding coding to the payer being billed.

Summary

The Blueprint Genetics Limb Malformations Panel (test code MA4001):

Read about our accreditations, certifications and CE-marked IVD medical devices here.

ICD Codes

Refer to the most current version of ICD-10-CM manual for a complete list of ICD-10 codes.

Sample Requirements

  • Blood (min. 1ml) in an EDTA tube
  • Extracted DNA, min. 2 μg in TE buffer or equivalent
  • Saliva (Please see Sample Requirements for accepted saliva kits)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

We do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue. In addition, if the patient is affected with a hematological malignancy, DNA extracted from a non-hematological source (e.g. skin fibroblasts) is strongly recommended.

Please note that, in rare cases, mitochondrial genome (mtDNA) variants may not be detectable in blood or saliva in which case DNA extracted from post-mitotic tissue such as skeletal muscle may be a better option.

Read more about our sample requirements here.

Limb malformations are present in isolated limb reduction defects and split hand/foot anomalies as well as some syndromic forms, such as the Cornelia de Lange syndrome caused by mutations in the NIPBL, RAD21, SMC3, HDAC8 or SMC1A genes, the Adams-Oliver syndrome caused by the ARHGAP31, DLL4, DOCK6, EOGT, NOTCH1 or RBPJ genes and the Fanconi-Anemia syndrome caused most commonly by the FANCA, FANCC or FANCG genes. Limb reduction defects are congenital limb anomalies that can affect thumb or radius of the hand (thumb/radial hypoplasia or aplasia) or cause transverse terminal or longitudinal reduction defects or hypoplasia of the limb. These limb anomalies can be unilateral or bilateral and only hands, only feet or all limbs can be affected. Different genetic and also non-genetic etiologies can cause very similar limb phenotypes sometimes making the clinical diagnostics of these anomalies challenging. Mutations of TBX5 cause Holt-Oram syndrome, characterized by a combination of cardiac defects and upper limb malformations. Thrombocytopenia-Absent Radius (TAR) syndrome is caused by mutations in RBM8A gene and is characterized by bilateral absence of the radii and thrombocytopenia, thumbs are usually present. SALL4 mutations can cause Duane Radial Ray (Okihiro) syndrome with varying degree of radial ray hypoplasia and Duane anomaly. Split hand/foot malformation (SHFM) refers to a rare congenital malformation with median clefts of the hands and feet. SHFM can be isolated or syndromic is genetically heterozygous. The most typical form of inheritance is autosomal dominant with incomplete penetrance.

Genes in the Limb Malformations Panel and their clinical significance

To view complete table content, scroll horizontally.

Gene Associated phenotypes Inheritance ClinVar HGMD
ARHGAP31 Adams-Oliver syndrome AD 3 6
ARID1A Coffin-Siris syndrome, Intellectual developmental disorder AD 27 35
ARID1B Coffin-Siris syndrome, Intellectual developmental disorder AD 153 185
ATR Cutaneous telangiectasia and cancer syndrome, Seckel syndrome AD/AR 10 33
BHLHA9 Syndactyly Malik-Percin type, mesoaxial synostotic, with phalangeal reduction, Split hand-foot malformation with long bone deficiency (SHFLD3), Gollop-Wolfgang AR 4 43
BRCA2 Fanconi anemia, Medulloblastoma, Glioma susceptibility, Pancreatic cancer, Wilms tumor, Breast-ovarian cancer, familial AD/AR 3369 2659
BRIP1 Fanconi anemia, Breast cancer AD/AR 238 189
DHODH Postaxial acrofacial dysostosis (Miller syndrome) AR 8 20
DLL4 Adams-Oliver syndrome AD 13 14
DLX5 Split-hand/foot malformation with sensorineural hearing loss, Split-hand/foot malformation AD/AR 3 9
DOCK6 Adams-Oliver syndrome AR 21 21
EOGT Adams-Oliver syndrome AR 8 5
ERCC4 Fanconi anemia, Xeroderma pigmentosum, XFE progeroid syndrome AR 13 70
ESCO2 SC phocomelia syndrome, Roberts syndrome AR 30 31
FANCA Fanconi anemia AR 191 677
FANCB Fanconi anemia XL 11 21
FANCC Fanconi anemia AR 94 64
FANCD2* Fanconi anemia AR 21 61
FANCE Fanconi anemia AR 4 17
FANCF Fanconia anemia AR 7 16
FANCG Fanconi anemia AR 16 92
FANCI Fanconi anemia AR 13 45
FANCL Fanconi anemia AR 13 24
FANCM Fanconi anemia AD/AR 6 50
FGF10 Aplasia of lacrimal and salivary glands AD 15 13
GDF5 Multiple synostoses syndrome, Fibular hypoplasia and complex brachydactyly, Acromesomelic dysplasia, Hunter-Thompson, Symphalangism, proximal, Chondrodysplasia, Brachydactyly type A2, Brachydactyly type C, Grebe dysplasia AD/AR 23 53
HDAC8 Cornelia de Lange syndrome XL 41 50
KYNU Hydroxykynureninuria, Vertebral, cardiac, renal, and limb defects syndrome 2 AR 4 7
NIPBL Cornelia de Lange syndrome AD 311 425
NOTCH1 Aortic valve disease, Adams-Oliver syndrome AD 56 96
NSDHL Congenital hemidysplasia with ichthyosiform erythroderma and limb defects (CHILD syndrome), CK syndrome XL 15 28
PALB2 Fanconi anemia, Pancreatic cancer, Breast cancer AD/AR 495 406
PITX1 Clubfoot, congenital, with or without deficiency of long bones and/or mirror-image polydactyly, Liebenberg syndrome AD 3 16
PUF60 Short stature, Microcephaly AD 24 30
RAD21* Cornelia de Lange syndrome 4 AD 14 11
RAD51C Fanconi anemia, Breast-ovarian cancer, familial AD/AR 107 125
RBM8A* Thrombocytopenia - absent radius AR 5 12
RBPJ* Adams-Oliver syndrome AD 7 6
RECQL4 Baller-Gerold syndrome, RAPADILINO syndrome, Rothmund-Thomson syndrome AR 82 114
SALL1* Townes-Brocks syndrome 1 AD 31 87
SALL4 Acro-renal-ocular syndrome, Duane-radial ray/Okihiro syndrome AD 21 56
SF3B4 Acrofacial dysostosis 1, Nager AD 27 38
SLX4 Fanconi anemia AR 18 72
SMC1A Cornelia de Lange syndrome XL 73 87
SMC3 Cornelia de Lange syndrome AD 25 21
TBX3 Ulnar-Mammary syndrome AD 6 20
TBX5 Holt-Oram syndrome AD 61 127
TP63 Rapp-Hodgkin syndrome, Orofacial cleft, ADULT syndrome, Ectrodactyly, ectodermal dysplasia, and cleft lip/palate syndrome, Ankyloblepharon-ectodermal defects-cleft lip/palate, Split-hand/foot malformation, Limb-mammary syndrome AD 59 122
WNT7A Ulna and fibula, absence of, with severe limb deficiency (Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome), Fuhrmann syndrome AR 6 11
XRCC2 Hereditary breast cancer AD/AR 10 21
#

The gene has suboptimal coverage (means <90% of the gene’s target nucleotides are covered at >20x with mapping quality score (MQ>20) reads), and/or the gene has exons listed under Test limitations section that are not included in the panel as they are not sufficiently covered with high quality sequence reads.

*

Some, or all, of the gene is duplicated in the genome. Read more.

The sensitivity to detect variants may be limited in genes marked with an asterisk (*) or number sign (#). Due to possible limitations these genes may not be available as single gene tests.

Gene refers to the HGNC approved gene symbol; Inheritance refers to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR), mitochondrial (mi), X-linked (XL), X-linked dominant (XLD) and X-linked recessive (XLR); ClinVar refers to the number of variants in the gene classified as pathogenic or likely pathogenic in this database (ClinVar); HGMD refers to the number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD). The list of associated, gene specific phenotypes are generated from CGD or Mitomap databases.

Non-coding variants covered by Limb Malformations Panel

To view complete table content, scroll horizontally.

Gene Genomic location HG19 HGVS RefSeq RS-number
BRCA2 Chr13:32889805 c.-40+1G>A NM_000059.3
BRCA2 Chr13:32890469 c.-39-89delC NM_000059.3
BRCA2 Chr13:32890556 c.-39-1_-39delGA NM_000059.3 rs758732038
BRCA2 Chr13:32890558 c.-39-1G>A NM_000059.3 rs1060499566
BRCA2 Chr13:32900222 c.426-12_426-8delGTTTT NM_000059.3 rs276174844
BRCA2 Chr13:32945079 c.8488-14A>G NM_000059.3
BRCA2 Chr13:32953872 c.8954-15T>G NM_000059.3
BRCA2 Chr13:32971007 c.9502-28A>G NM_000059.3 rs397508059
BRCA2 Chr13:32971023 c.9502-12T>G NM_000059.3 rs81002803
BRIP1 Chr17:59858864 c.1629-498A>T NM_032043.2
ESCO2 Chr8:27650167 c.1354-18G>A NM_001017420.2 rs80359865
FANCA Chr16:89805127 c.4261-19_4261-12delACCTGCTC NM_000135.3
FANCA Chr16:89816056 c.3239+82T>G NM_000135.2
FANCA Chr16:89818822 c.2982-192A>G NM_000135.2
FANCA Chr16:89831215 c.2778+83C>G NM_000135.2 rs750997715
FANCA Chr16:89836111 c.2504+134A>G NM_000135.2
FANCA Chr16:89836805 c.2223-138A>G NM_000135.2
FANCA Chr16:89849346 c.1567-20A>G NM_000135.2 rs775154397
FANCA Chr16:89864654 c.893+920C>A NM_000135.2
FANCC Chr9:98011653 c.-78-2A>G NM_000136.2 rs587779898
FANCC Chr9:98079807 c.-79+1G>A NM_000136.2
FANCD2 Chr3:10083186 c.696-121C>G NM_033084.3
FANCD2 Chr3:10102127 c.1766+40T>G NM_033084.3
FANCD2 Chr3:10106024 c.1948-16T>G NM_033084.3
FANCI Chr15:89825208 c.1583+142C>T NM_001113378.1
FANCL Chr2:58433394 c.375-2033C>G NM_001114636.1
NIPBL Chr5:36877039 c.-321_-320delCCinsA NM_133433.3 rs724159980
NIPBL Chr5:36877266 c.-94C>T NM_133433.3
NIPBL Chr5:36953718 c.-79-2A>G NM_133433.3
NIPBL Chr5:37022138 c.5329-15A>G NM_133433.3 rs587783968
NIPBL Chr5:37026318 c.5710-13_5710-12delCTinsAA NM_133433.3
NSDHL ChrX:152037789 c.*129C>T NM_015922.2 rs145978994
PALB2 Chr16:23649285 c.109-12T>A NM_024675.3 rs774949203
RBM8A Chr1:145507646 c.-21G>A NM_005105.4
RBM8A Chr1:145507765 c.67+32G>C NM_005105.4 rs201779890
TBX3 Chr12:115122148 NM_016569.3
TBX5 Chr12:114704515 c.*88822C>A NM_000192.3 rs141875471

Test Strengths

The strengths of this test include:

  • CAP accredited laboratory
  • CLIA-certified personnel performing clinical testing in a CLIA-certified laboratory
  • Powerful sequencing technologies, advanced target enrichment methods and precision bioinformatics pipelines ensure superior analytical performance
  • Careful construction of clinically effective and scientifically justified gene panels
  • Some of the panels include the whole mitochondrial genome (please see the Panel Content section)
  • Our Nucleus online portal providing transparent and easy access to quality and performance data at the patient level
  • ~2,000 non-coding disease causing variants in our clinical grade NGS assay for panels (please see ‘Non-coding disease causing variants covered by this panel’ in the Panel Content section)
  • Our rigorous variant classification scheme
  • Our systematic clinical interpretation workflow using proprietary software enabling accurate and traceable processing of NGS data
  • Our comprehensive clinical statements

Test Limitations

Genes with partial, or whole gene, segmental duplications in the human genome are marked with an asterisk (*) if they overlap with the UCSC pseudogene regions. The technology may have limited sensitivity to detect variants in genes marked with these symbols (please see the Panel content table above).

This test does not detect the following:

  • Complex inversions
  • Gene conversions
  • Balanced translocations
  • Some of the panels include the whole mitochondrial genome but not all (please see the Panel Content section)
  • Repeat expansion disorders unless specifically mentioned
  • Non-coding variants deeper than ±20 base pairs from exon-intron boundary unless otherwise indicated (please see above Panel Content / non-coding variants covered by the panel).

This test may not reliably detect the following:

  • Low level mosaicism in nuclear genes (variant with a minor allele fraction of 14.6% is detected with 90% probability)
  • Stretches of mononucleotide repeats
  • Low level heteroplasmy in mtDNA (>90% are detected at 5% level)
  • Indels larger than 50bp
  • Single exon deletions or duplications
  • Variants within pseudogene regions/duplicated segments
  • Some disease causing variants present in mtDNA are not detectable from blood, thus post-mitotic tissue such as skeletal muscle may be required for establishing molecular diagnosis.

The sensitivity of this test may be reduced if DNA is extracted by a laboratory other than Blueprint Genetics.

For additional information, please refer to the Test performance section.

The genes on the panel have been carefully selected based on scientific literature, mutation databases and our experience.

Our panels are sectioned from our high-quality, clinical grade NGS assay. Please see our sequencing and detection performance table for details regarding our ability to detect different types of alterations (Table).

Assays have been validated for various sample types including EDTA-blood, isolated DNA (excluding from formalin fixed paraffin embedded tissue), saliva and dry blood spots (filter cards). These sample types were selected in order to maximize the likelihood for high-quality DNA yield. The diagnostic yield varies depending on the assay used, referring healthcare professional, hospital and country. Plus analysis increases the likelihood of finding a genetic diagnosis for your patient, as large deletions and duplications cannot be detected using sequence analysis alone. Blueprint Genetics’ Plus Analysis is a combination of both sequencing and deletion/duplication (copy number variant (CNV)) analysis.

The performance metrics listed below are from an initial validation performed at our main laboratory in Finland. The performance metrics of our laboratory in Marlborough, MA, are equivalent.

Performance of Blueprint Genetics high-quality, clinical grade NGS sequencing assay for panels.

Sensitivity % (TP/(TP+FN) Specificity %
Single nucleotide variants 99.89% (99,153/99,266) >99.9999%
Insertions, deletions and indels by sequence analysis
1-10 bps 99.2% (7,745/7,806) >99.9999%
11-50 bps 99.13% (2,524/2,546) >99.9999%
Copy number variants (exon level dels/dups)
1 exon level deletion (heterozygous) 100% (20/20) NA
1 exon level deletion (homozygous) 100% (5/5) NA
1 exon level deletion (het or homo) 100% (25/25) NA
2-7 exon level deletion (het or homo) 100% (44/44) NA
1-9 exon level duplication (het or homo) 75% (6/8) NA
Simulated CNV detection
5 exons level deletion/duplication 98.7% 100.00%
Microdeletion/-duplication sdrs (large CNVs, n=37))
Size range (0.1-47 Mb) 100% (25/25)
     
The performance presented above reached by Blueprint Genetics high-quality, clinical grade NGS sequencing assay with the following coverage metrics
     
Mean sequencing depth 143X
Nucleotides with >20x sequencing coverage (%) 99.86%

Performance of Blueprint Genetics Mitochondrial Sequencing Assay.

Sensitivity % Specificity %
ANALYTIC VALIDATION (NA samples; n=4)
Single nucleotide variants
Heteroplasmic (45-100%) 100.0% (50/50) 100.0%
Heteroplasmic (35-45%) 100.0% (87/87) 100.0%
Heteroplasmic (25-35%) 100.0% (73/73) 100.0%
Heteroplasmic (15-25%) 100.0% (77/77) 100.0%
Heteroplasmic (10-15%) 100.0% (74/74) 100.0%
Heteroplasmic (5-10%) 100.0% (3/3) 100.0%
Heteroplasmic (<5%) 50.0% (2/4) 100.0%
CLINICAL VALIDATION (n=76 samples)
All types
Single nucleotide variants n=2026 SNVs
Heteroplasmic (45-100%) 100.0% (1940/1940) 100.0%
Heteroplasmic (35-45%) 100.0% (4/4) 100.0%
Heteroplasmic (25-35%) 100.0% (3/3) 100.0%
Heteroplasmic (15-25%) 100.0% (3/3) 100.0%
Heteroplasmic (10-15%) 100.0% (9/9) 100.0%
Heteroplasmic (5-10%) 92.3% (12/13) 99.98%
Heteroplasmic (<5%) 88.9% (48/54) 99.93%
Insertions and deletions by sequence analysis n=40 indels
Heteroplasmic (45-100%) 1-10bp 100.0% (32/32) 100.0%
Heteroplasmic (5-45%) 1-10bp 100.0% (3/3) 100.0%
Heteroplasmic (<5%) 1-10bp 100.0% (5/5) 99,997%
SIMULATION DATA /(mitomap mutations)
Insertions, and deletions 1-24 bps by sequence analysis; n=17
Homoplasmic (100%) 1-24bp 100.0% (17/17) 99.98%
Heteroplasmic (50%) 100.0% (17/17) 99.99%
Heteroplasmic (25%) 100.0% (17/17) 100.0%
Heteroplasmic (20%) 100.0% (17/17) 100.0%
Heteroplasmic (15%) 100.0% (17/17) 100.0%
Heteroplasmic (10%) 94.1% (16/17) 100.0%
Heteroplasmic (5%) 94.1% (16/17) 100.0%
Copy number variants (separate artifical mutations; n=1500)
Homoplasmic (100%) 500 bp, 1kb, 5 kb 100.0% 100.0%
Heteroplasmic (50%) 500 bp, 1kb, 5 kb 100.0% 100.0%
Heteroplasmic (30%) 500 bp, 1kb, 5 kb 100.0% 100.0%
Heteroplasmic (20%) 500 bp, 1kb, 5 kb 99.7% 100.0%
Heteroplasmic (10%) 500 bp, 1kb, 5 kb 99.0% 100.0%
The performance presented above reached by following coverage metrics at assay level (n=66)
Mean of medians Median of medians
Mean sequencing depth MQ0 (clinical) 18224X 17366X
Nucleotides with >1000x MQ0 sequencing coverage (%) (clinical) 100%
rho zero cell line (=no mtDNA), mean sequencing depth 12X

The target region for each gene includes coding exons and ±20 base pairs from the exon-intron boundary. In addition, the panel includes non-coding and regulatory variants if listed above (Non-coding variants covered by the panel). Some regions of the gene(s) may be removed from the panel if specifically mentioned in the ‘Test limitations” section above. If the test includes the mitochondrial genome the target region gene list contains the mitochondrial genes. The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. Our pipeline is streamlined to maximize sensitivity without sacrificing specificity. We have incorporated a number of reference population databases and mutation databases including, but not limited, to 1000 Genomes Project, gnomAD, ClinVar and HGMD into our clinical interpretation software to make the process effective and efficient. For missense variants, in silico variant prediction tools such as  SIFT, PolyPhen,MutationTaster are used to assist with variant classification. Through our online ordering and statement reporting system, Nucleus, ordering providers have access to the details of the analysis, including patient specific sequencing metrics, a gene level coverage plot and a list of regions with suboptimal coverage (<20X for nuclear genes and <1000X for mtDNA) if applicable. This reflects our mission to build fully transparent diagnostics where ordering providers can easily visualize the crucial details of the analysis process.

We provide customers with the most comprehensive clinical report available on the market. Clinical interpretation requires a fundamental understanding of clinical genetics and genetic principles. At Blueprint Genetics, our PhD molecular geneticists, medical geneticists, and clinical consultants prepare the clinical statement together by evaluating the identified variants in the context of the phenotypic information provided in the requisition form. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals regardless of whether they have formal training in genetics.

Variant classification is the cornerstone of clinical interpretation and resulting patient management decisions. Our classifications follow the ACMG guideline 2015.

The final step in the analysis is orthogonal confirmation. Sequence and copy number variants classified as pathogenic, likely pathogenic, and variants of uncertain significance (VUS) are confirmed using bi-directional Sanger sequencing or by orthogonal methods such as qPCR/ddPCR when they do not meet our stringent NGS quality metrics for a true positive call.

Our clinical statement includes tables for sequencing and copy number variants that include basic variant information (genomic coordinates, HGVS nomenclature, zygosity, allele frequencies, in silico predictions, OMIM phenotypes, and classification of the variant). In addition, the statement includes detailed descriptions of the variant, gene, and phenotype(s) including the role of the specific gene in human disease, the mutation profile, information about the gene’s variation in population cohorts, and detailed information about related phenotypes. We also provide links to the references, abstracts, and variant databases used to help ordering providers further evaluate the reported findings if desired. The conclusion summarizes all of the existing information and provides our rationale for the classification of the variant.

Identification of pathogenic or likely pathogenic variants in dominant disorders or their combinations in different alleles in recessive disorders are considered molecular confirmation of the clinical diagnosis. In these cases, family member testing can be used for risk stratification. We do not recommend using variants of uncertain significance (VUS) for family member risk stratification or patient management. Genetic counseling is recommended.

Our interpretation team analyzes millions of variants from thousands of individuals with rare diseases. Our internal database and our understanding of variants and related phenotypes increases with every case analyzed. Our laboratory is therefore well-positioned to re-classify previously reported variants as new information becomes available. If a variant previously reported by Blueprint Genetics is re-classified, our laboratory will issue a follow-up statement to the original ordering healthcare provider at no additional cost, according to our latest follow-up reporting policy.