Skeletal Dysplasias Core Panel
Is ideal for patients with a clinical suspicion of a skeletal dysplasia. The genes on this panel are included in the Comprehensive Skeletal Dysplasias and Disorders Panel and in the Comprehensive Growth Disorders / Skeletal Dysplasias and Disorders Panel.
- PLUS
Summary
The Blueprint Genetics Skeletal Dysplasias Core Panel (test code MA3501):
Read about our accreditations, certifications and CE-marked IVD medical devices here.
This panel includes also a pathogenic intronic variant that is often missed by exome sequencing: *IFITM5* c.-14C>T (rs587776916), which accounts for almost all cases of osteogenesis imperfecta type V (PMID 23240094). Currently, other regions of *IFITM5* gene are not yet covered.
Sample Requirements
- Blood (min. 1ml) in an EDTA tube
- Extracted DNA, min. 2 μg in TE buffer or equivalent
- Saliva (Please see Sample Requirements for accepted saliva kits)
Label the sample tube with your patient’s name, date of birth and the date of sample collection.
We do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue. In addition, if the patient is affected with a hematological malignancy, DNA extracted from a non-hematological source (e.g. skin fibroblasts) is strongly recommended.
Please note that, in rare cases, mitochondrial genome (mtDNA) variants may not be detectable in blood or saliva in which case DNA extracted from post-mitotic tissue such as skeletal muscle may be a better option.
Read more about our sample requirements here.
The Skeletal Dysplasias Core Panel is designed to detect mutations responsible for various skeletal dysplasias. Some of the resulting skeletal dysplasias are severe and potentially lethal (such as thanatophoric dysplasia, different types of achondrogenesis and osteogenesis imperfecta type II). Other non-lethal skeletal dysplasias result in disproportionate short stature. Achondroplasia is the most common cause of disproportionate short stature worldwide. It is characterized by rhizomelic shortening of the limbs, exaggerated lumbar lordosis, brachydactyly, and macrocephaly with frontal bossing and midface hypoplasia. Type II collagen defects (mutations in COL2A1 genes) have been identified in a spectrum of disorders ranging from perinatally lethal conditions to those with only mild arthropathy. As many different skeletal dysplasias have similar clinical and radiological findings, multigene panel testing allows for efficient diagnostic testing. Identification of causative mutation(s) establishes the inheritance mode in the family and enables genetic counselling. In addition, identifying the causative mutation(s) provides essential information for the doctor taking care of the patient. This panel provides excellent diffential diagnostic power for the major genes causing skeletal dysplasias.
Genes in the Skeletal Dysplasias Core Panel and their clinical significance
To view complete table content, scroll horizontally.
Gene | Associated phenotypes | Inheritance | ClinVar | HGMD |
---|---|---|---|---|
ACAN# | Spondyloepimetaphyseal dysplasia, aggrecan type, Spondyloepiphyseal dysplasia, Kimberley type, Osteochondritis dissecans, short stature, and early-onset osteoarthritis | AD/AR | 20 | 56 |
ACP5 | Spondyloenchondrodysplasia with immune dysregulation | AR | 12 | 26 |
ADAMTS10 | Weill-Marchesani syndrome | AR | 8 | 14 |
ADAMTSL2#* | Geleophysic dysplasia 3 | AR | 8 | 28 |
AGPS | Rhizomelic chondrodysplasia punctata type 3 | AR | 4 | 8 |
ALPL | Odontohypophosphatasia, Hypophosphatasia perinatal lethal, infantile, juvenile and adult forms | AD/AR | 78 | 291 |
ANKH | Calcium pyrophosphate deposition disease (familial chondrocalcinosis type 2), Craniometaphyseal dysplasia autosomal dominant type | AD | 13 | 20 |
ARSE* | Chondrodysplasia punctata X-linked recessive, brachytelephalangic type (CDPX1) | XL | 22 | 46 |
B3GALT6# | Spondyloepimetaphyseal dysplasia with joint laxity, Ehlers-Danlos syndrome | AR | 17 | 27 |
BMP1 | Osteogenesis imperfecta | AR | 7 | 21 |
BMPR1B | Acromesomelic dysplasia, Demirhan, Brachydactyly C/Symphalangism-like pheno, Brachydactyly type A2, Pulmonary arterial hypertension (PAH) | AD/AR | 12 | 23 |
CA2 | Osteopetrosis, with renal tubular acidosis | AR | 9 | 31 |
CANT1 | Desbuquois dysplasia, Epiphyseal dysplasia, multiple | AR | 20 | 28 |
CDC6 | Meier-Gorlin syndrome (Ear-patella-short stature syndrome) | AR | 2 | 2 |
CDKN1C | Beckwith-Wiedemann syndrome, IMAGE syndrome | AD | 35 | 81 |
CDT1 | Meier-Gorlin syndrome (Ear-patella-short stature syndrome) | AR | 6 | 12 |
CHST3 | Spondyloepiphyseal dysplasia with congenital joint dislocations (recessive Larsen syndrome) | AR | 18 | 37 |
CLCN7 | Osteopetrosis | AD/AR | 15 | 98 |
COL10A1 | Metaphyseal chondrodysplasia, Schmid | AD | 21 | 53 |
COL11A1 | Marshall syndrome, Fibrochondrogenesis, Stickler syndrome type 2, Deafness | AD/AR | 34 | 94 |
COL11A2 | Weissenbacher-Zweymuller syndrome, Deafness, Otospondylomegaepiphyseal dysplasia, Fibrochondrogenesis, Stickler syndrome type 3 (non-ocular) | AD/AR | 29 | 57 |
COL1A1 | Ehlers-Danlos syndrome, Caffey disease, Osteogenesis imperfecta type 1, Osteogenesis imperfecta type 2, Osteogenesis imperfecta type 3, Osteogenesis imperfecta type 4 | AD | 352 | 962 |
COL1A2 | Ehlers-Danlos syndrome, cardiac valvular form, Osteogenesis imperfecta type 1, Osteogenesis imperfecta type 2, Osteogenesis imperfecta type 3, Osteogenesis imperfecta type 4 | AD/AR | 186 | 509 |
COL2A1 | Avascular necrosis of femoral head, Rhegmatogenous retinal detachment, Epiphyseal dysplasia, with myopia and deafness, Czech dysplasia, Achondrogenesis type 2, Platyspondylic dysplasia Torrance type, Hypochondrogenesis, Spondyloepiphyseal dysplasia congenital (SEDC), Spondyloepimetaphyseal dysplasia (SEMD) Strudwick type, Kniest dysplasia, Spondyloperipheral dysplasia, Mild SED with premature onset arthrosis, SED with metatarsal shortening, Stickler syndrome type 1 | AD/AR | 180 | 561 |
COL9A1 | Multiple epiphyseal dysplasia type 6 (EDM6), Stickler syndrome, type IV | AD/AR | 9 | 6 |
COL9A2 | Stickler syndrome, Multiple epiphyseal dysplasia type 2 (EDM2) | AD/AR | 7 | 12 |
COL9A3 | Multiple epihyseal dysplasia type 3 (EDM3), Stickler syndrome recessive type | AD/AR | 10 | 14 |
COMP | Pseudoachondroplasia, Multiple epiphyseal dysplasia | AD | 43 | 186 |
CRTAP | Osteogenesis imperfecta type 2, Osteogenesis imperfecta type 3, Osteogenesis imperfecta type 4 | AR | 12 | 30 |
CSPP1 | Jeune asphyxiating thoracic dystrophy, Joubert syndrome | AR | 32 | 27 |
CTSK | Pycnodysostosis | AR | 35 | 58 |
CUL7 | 3-M syndrome, Yakut short stature syndrome | AR | 26 | 83 |
CYP27B1 | Vitamin D-dependent rickets | AR | 23 | 73 |
DHCR24 | Desmosterolosis | AR | 6 | 9 |
DLL3 | Spondylocostal dysostosis | AR | 12 | 26 |
DVL1 | Robinow syndrome | AD | 17 | 19 |
DYM | Dyggve-Melchior-Clausen dysplasia, Smith-McCort dysplasia | AR | 22 | 34 |
DYNC2H1 | Short -rib thoracic dysplasia with or without polydactyly type 1, Short -rib thoracic dysplasia with or without polydactyly type 3, Jeune asphyxiating thoracic dystrophy, SRPS type 2 (Majewski) | AR/Digenic | 148 | 205 |
EBP | Chondrodysplasia punctata, Male EBP disorder with neurologic defects (MEND) | XL | 43 | 90 |
EIF2AK3 | SED, Wolcott-Rallison type | AR | 9 | 80 |
ENPP1 | Arterial calcification, Hypophosphatemic rickets | AD/AR | 22 | 72 |
ESCO2 | SC phocomelia syndrome, Roberts syndrome | AR | 30 | 31 |
EVC | Weyers acrofacial dysostosis, Ellis-van Creveld syndrome | AD/AR | 58 | 83 |
EVC2 | Ellis-van Creveld syndrome, Weyers acrodental dysostosis | AD/AR | 78 | 75 |
FAM20C | Hypophosphatemia, hyperphosphaturia, dental anomalies, intracerebral calcifications and osteosclerosis (Raine syndrome) | AR | 13 | 25 |
FGF23 | Tumoral calcinosis, hyperphosphatemic, Hypophosphatemic rickets | AD/AR | 10 | 17 |
FGFR1 | Pfeiffer syndrome, Trigonocephaly, Hypogonadotropic hypogonadism, Osteoglophonic Dwarfism - Craniostenosis, Hartsfield syndrome | AD/Digenic/Multigenic | 72 | 257 |
FGFR2 | Apert syndrome, Pfeiffer syndrome, Jackson-Weiss syndrome, Lacrimoauriculodentodigital syndrome, Beare-Stevenson cutis gyrata syndrome, Antley-Bixler syndrome without genital anomalies or disordered steroidogenesis, Craniofacial-skeletal-dermatological dysplasia, Crouzon syndrome, Bent bone dysplasia | AD | 100 | 154 |
FGFR3 | Lacrimoauriculodentodigital syndrome, Muenke syndrome, Crouzon syndrome with acanthosis nigricans, Camptodactyly, tall stature, and hearing loss (CATSHL) syndrome, Achondroplasia, Hypochondroplasia, Thanatophoric dysplasia type 1, Thanatophoric dysplasia type 2, SADDAN | AD/AR | 54 | 77 |
FKBP10 | Bruck syndrome 1, Osteogenesis imperfecta, type XI | AR | 20 | 44 |
FLNA | Frontometaphyseal dysplasia, Osteodysplasty Melnick-Needles, Otopalatodigital syndrome type 1, Otopalatodigital syndrome type 2, Terminal osseous dysplasia with pigmentary defects, Periventricular nodular heterotopia 1, Melnick-Needles syndrome, Intestinal pseudoobstruction, neuronal, X-linked/Congenital short bowel syndrome, Cardiac valvular dysplasia, X-linked | XL | 133 | 257 |
FLNB | Larsen syndrome (dominant), Atelosteogenesis type 1, Atelosteogenesis type 3, Spondylo-carpal-tarsal dyspasia, Boomerang dysplasia | AD/AR | 43 | 121 |
GDF5 | Multiple synostoses syndrome, Fibular hypoplasia and complex brachydactyly, Acromesomelic dysplasia, Hunter-Thompson, Symphalangism, proximal, Chondrodysplasia, Brachydactyly type A2, Brachydactyly type C, Grebe dysplasia | AD/AR | 23 | 53 |
GNPAT | Rhizomelic chondrodysplasia punctata, rhizomelic | AR | 8 | 14 |
HSPG2 | Schwartz-Jampel syndrome, Dyssegmental dysplasia Silverman-Handmaker type, Dyssegmental dysplasia Rolland-Desbuquis type | AR | 16 | 60 |
IFT140 | Short -rib thoracic dysplasia with or without polydactyly, Asphyxiating thoracic dysplasia (ATD; Jeune) | AR | 38 | 63 |
IFT172 | Retinitis pigmentosa, Short -rib thoracic dysplasia with or without polydactyly, Asphyxiating thoracic dysplasia (ATD; Jeune) | AR | 22 | 25 |
IFT80 | Short -rib thoracic dysplasia with or without polydactyly, Asphyxiating thoracic dysplasia (ATD; Jeune) | AR | 11 | 11 |
IHH | Acrocapitofemoral dysplasia, Brachydactyly, Syndactyly type Lueken | AD/AR | 12 | 32 |
INPPL1 | Opsismodysplasia | AR | 16 | 32 |
KAT6B | Ohdo syndrome, SBBYS variant, Genitopatellar syndrome | AD | 47 | 73 |
LBR | Pelger-Huet anomaly, Reynolds syndrome, Greenberg/HEM skeletal dysplasia, Hydrops-ectopic calcification-moth-eaten skeletal dysplasia | AD/AR | 22 | 24 |
LIFR | Stuve-Wiedemann dysplasia, Schwartz-Jampel type 2 syndrome | AR | 12 | 32 |
LMX1B | Nail-patella syndrome | AD | 26 | 194 |
LRP5* | Van Buchem disease, Osteoporosis-pseudoglioma syndrome, Hyperostosis, endosteal, Osteosclerosis, Exudative vitreoretinopathy, Osteopetrosis late-onset form type 1, LRP5 primary osteoporosis | AD/AR/Digenic | 57 | 196 |
LTBP2 | Weill-Marchesani syndrome, Microspherophakia and/or megalocornea, with ectopia lentis and with or without secondary glaucoma, Glaucoma, primary congenital | AR | 21 | 27 |
MATN3 | Spondyloepimetaphyseal dysplasia Matrilin type, Multiple epiphyseal dysplasia type 5 (EDM5) | AD/AR | 8 | 25 |
MMP9 | Metaphyseal anadysplasia | AR | 1 | 7 |
MYO18B | Klippel-Feil syndrome 4, autosomal recessive, with myopathy and facial dysmorphism | AR | 2 | 4 |
NEK1 | Short -rib thoracic dysplasia with or without polydactyly, SRPS type 2 (Majewski) | AR/Digenic | 22 | 23 |
NPR2 | Acromesomelic dysplasia type Maroteaux, Epiphyseal chondrodysplasia, Miura, Short stature with nonspecific skeletal abnormalities | AD/AR | 32 | 75 |
OBSL1 | 3-M syndrome | AR | 13 | 33 |
ORC1 | Meier-Gorlin syndrome (Ear-patella-short stature syndrome) | AR | 9 | 10 |
ORC4 | Meier-Gorlin syndrome (Ear-patella-short stature syndrome) | AR | 24 | 6 |
ORC6 | Meier-Gorlin syndrome (Ear-patella-short stature syndrome) | AR | 7 | 6 |
P3H1 | Osteogenesis imperfecta | AR | 18 | 63 |
PAPSS2 | Brachyolmia 4 with mild epiphyseal and metaphyseal changes, SEMD PAPPS2 type | AR | 13 | 20 |
PCNT | Microcephalic osteodysplastic primordial dwarfism | AR | 49 | 88 |
PEX7 | Refsum disease, Rhizomelic CDP type 1 | AR | 44 | 53 |
PHEX | Hypophosphatemic rickets | XL | 263 | 437 |
PISD | AR | |||
PLOD2 | Bruck syndrome, Osteogenesis imperfecta type 3 | AR | 8 | 23 |
PLS3 | Osteoporosis and osteoporotic fractures | XL | 1 | 17 |
PPIB | Osteogenesis imperfecta type 2, Osteogenesis imperfecta type 3, Osteogenesis imperfecta type 4 | AR | 8 | 13 |
PTH1R | Metaphyseal chondrodysplasia Jansen type, Failure of tooth eruption, Eiken dysplasia, Blomstrand dysplasia | AD/AR | 13 | 43 |
RMRP | Cartilage-hair hypoplasia, Metaphyseal dysplasia without hypotrichosis, Anauxetic dysplasia | AR | 87 | 123 |
RNU4ATAC | Roifman syndrome, Microcephalic osteodysplastic primordial dwarfism type 1, Microcephalic osteodysplastic primordial dwarfism type 3 | AR | 15 | 24 |
ROR2 | Robinow syndrome recessive type, Brachydactyly type B | AD/AR | 21 | 40 |
RUNX2 | Cleidocranial dysplasia, Metaphyseal dysplasia with maxillary hypoplasia | AD | 21 | 216 |
SBDS* | Aplastic anemia, Shwachman-Diamond syndrome, Severe spondylometaphyseal dysplasia | AR | 19 | 90 |
SERPINF1 | Osteogenesis imperfecta, type VI | AR | 9 | 41 |
SERPINH1 | Osteogenesis imperfecta type 3 | AR | 3 | 6 |
SHOX#* | Leri-Weill dyschondrosteosis, Langer mesomelic dysplasia, Short stature | XL/PAR | 25 | 431 |
SLC26A2 | Diastrophic dysplasia, Atelosteogenesis type 2, De la Chapelle dysplasia, Recessive Multiple Epiphyseal dysplasia, Achondrogenesis type 1B | AR | 73 | 54 |
SLC34A3 | Hypophosphatemic rickets with hypercalciuria | AR | 22 | 38 |
SLC39A13 | Spondylodysplastic Ehlers-Danlos syndrome | AR | 2 | 9 |
SMAD4 | Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome, Polyposis, juvenile intestinal, Myhre dysplasia, Hereditary hemorrhagic telangiectasia | AD | 179 | 143 |
SMARCAL1 | Schimke immunoosseous dysplasia | AR | 20 | 88 |
SOX9 | Campomelic dysplasia, 46,XY sex reversal, Brachydactyly with anonychia (Cooks syndrome) | AD | 47 | 144 |
TCIRG1 | Osteopetrosis, severe neonatal or infantile forms (OPTB1) | AD/AR | 48 | 130 |
TGFB1 | Diaphyseal dysplasia Camurati-Engelmann | AD | 15 | 23 |
TNFRSF11A | Familial expansile osteolysis, Paget disease of bone, Osteopetrosis, severe neonatal or infantile forms (OPTB1) | AD/AR | 8 | 24 |
TNFRSF11B | Paget disease of bone, juvenile | AR | 8 | 18 |
TRAPPC2* | Spondyloepiphyseal dysplasia tarda | XL | 12 | 55 |
TRIP11* | Achondrogenesis, type IA | AR | 11 | 17 |
TRPV4 | Metatropic dysplasia, Spondyloepiphyseal dysplasia Maroteaux type, Parastremmatic dwarfism, Hereditary motor and sensory neuropathy, Spondylometaphyseal dysplasia Kozlowski type, Spinal muscular atrophy, Charcot-Marie-Tooth disease, Brachyolmia (autosomal dominant type), Familial Digital arthropathy with brachydactyly | AD | 61 | 78 |
TTC21B | Short-rib thoracic dysplasia, Nephronophthisis, Asphyxiating thoracic dysplasia (ATD; Jeune) | AR | 23 | 63 |
VDR | Vitamin D-dependent rickets | AD/AR | 17 | 66 |
WDR19 | Retinitis pigmentosa, Nephronophthisis, Short -rib thoracic dysplasia with or without polydactyly, Senior-Loken syndrome, Cranioectodermal dysplasia (Levin-Sensenbrenner) type 1, Cranioectodermal dysplasia (Levin-Sensenbrenner) type 2, Asphyxiating thoracic dysplasia (ATD; Jeune) | AR | 33 | 43 |
WDR35 | Cranioectodermal dysplasia (Levin-Sensenbrenner) type 1, Cranioectodermal dysplasia (Levin-Sensenbrenner) type 2, Short rib-polydactyly syndrome type 5 | AR | 28 | 31 |
WISP3 | Arthropathy, progressive pseudorheumatoid, of childhood, Spondyloepiphyseal dysplasia tarda with progressive arthropathy | AR | 16 | 69 |
WNT5A | Robinow syndrome | AD | 7 | 11 |
XYLT1 | Desbuquois dysplasia 2 | AR | 11 | 19 |
The gene has suboptimal coverage (means <90% of the gene’s target nucleotides are covered at >20x with mapping quality score (MQ>20) reads), and/or the gene has exons listed under Test limitations section that are not included in the panel as they are not sufficiently covered with high quality sequence reads.
Some, or all, of the gene is duplicated in the genome. Read more.
The sensitivity to detect variants may be limited in genes marked with an asterisk (*) or number sign (#). Due to possible limitations these genes may not be available as single gene tests.
Gene refers to the HGNC approved gene symbol; Inheritance refers to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR), mitochondrial (mi), X-linked (XL), X-linked dominant (XLD) and X-linked recessive (XLR); ClinVar refers to the number of variants in the gene classified as pathogenic or likely pathogenic in this database (ClinVar); HGMD refers to the number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD). The list of associated, gene specific phenotypes are generated from CGD or Mitomap databases.
Non-coding variants covered by Skeletal Dysplasias Core Panel
To view complete table content, scroll horizontally.
Gene | Genomic location HG19 | HGVS | RefSeq | RS-number | Comment | Reference |
---|---|---|---|---|---|---|
ALPL | Chr1:21835920 | c.-195C>T | NM_000478.4 | |||
ALPL | Chr1:21896764 | c.793-30_793-11delGGCATGTGCTGACACAGCCC | NM_000478.4 | |||
ANKH | Chr5:14871567 | c.-11C>T | NM_054027.4 | |||
BMP1 | Chr8:22058957 | c.*241T>C | NM_001199.3 | rs786205217 | ||
BMPR1B | Chr4:95797053 | c.-113+2T>G | NM_001203.2 | |||
CANT1 | Chr17:77005745 | c.-342+1G>A | NM_138793.3 | |||
CDKN1C | Chr11:2905209 | c.*5+20G>T | NM_000076.2 | rs760540648 | ||
CLCN7 | Chr16:1506057 | c.916+57A>T | NM_001287.5 | |||
CLCN7 | Chr16:1507356 | c.739-18G>A | NM_001287.5 | rs371893553 | ||
COL11A1 | Chr1:103386637 | c.3744+437T>G | NM_080629.2 | |||
COL11A1 | Chr1:103488576 | c.1027-24A>G | NM_080629.2 | |||
COL11A1 | Chr1:103491958 | c.781-450T>G | NM_080629.2 | rs587782990 | ||
COL1A1 | Chr17:48266910 | c.2668-11T>G | NM_000088.3 | rs786205505 | ||
COL1A1 | Chr17:48267594 | c.2451+94G>T | NM_000088.3 | |||
COL1A1 | Chr17:48267611 | c.2451+77C>T | NM_000088.3 | rs72651665 | ||
COL1A1 | Chr17:48268147 | c.2343+31T>A | NM_000088.3 | |||
COL1A1 | Chr17:48272201 | c.1354-12G>A | NM_000088.3 | rs72648337 | ||
COL1A1 | Chr17:48273368 | c.1003-43_1003-32delTGCCATCTCTTC | NM_000088.3 | rs72645359 | ||
COL1A1 | Chr17:48273574 | c.958-18_958-15delTTCC | NM_000088.3 | rs72645351 | ||
COL1A1 | Chr17:48273742 | c.904-14G>A | NM_000088.3 | |||
COL1A1 | Chr17:48273743 | c.904-15T>A | NM_000088.3 | |||
COL1A2 | Chr7:94025130 | c.70+717A>G | NM_000089.3 | rs72656354 | ||
COL1A2 | Chr7:94030856 | c.226-22_226-11delTTTTTTTTTTTT | NM_000089.3 | |||
COL2A1 | Chr12:48379984 | c.1527+135G>A | NM_001844.4 | |||
CRTAP | Chr3:33160815 | c.472-1021C>G | NM_006371.4 | rs72659360 | ||
CTSK | Chr1:150778521 | c.244-29A>G | NM_000396.3 | |||
CUL7 | Chr6:43010511 | c.3897+29G>A | NM_001168370.1 | |||
DYNC2H1 | Chr11:103019205 | c.2819-14A>G | NM_001080463.1 | rs781091611 | ||
DYNC2H1 | Chr11:103055609 | c.6478-16G>A | NM_001080463.1 | rs376892534 | ||
ESCO2 | Chr8:27650167 | c.1354-18G>A | NM_001017420.2 | rs80359865 | ||
EVC | Chr4:5749725 | c.940-150T>G | NM_153717.2 | |||
FGFR2 | Chr10:123099960 | c.*139411C>T | . | |||
FLNA | ChrX:153581587 | c.6023-27_6023-16delTGACTGACAGCC | NM_001110556.1 | |||
HSPG2 | Chr1:22211006 | c.1654+15G>A | NM_005529.5 | |||
HSPG2 | Chr1:22215993 | c.574+481C>T | NM_005529.5 | |||
IFITM5 | Chr11:299504 | c.-14C>T | NM_001025295.2 | rs587776916 | Explain almost all cases of OI type V | PMID 23240094 |
IFT140 | Chr16:1576595 | c.2577+25G>A | NM_014714.3 | rs1423102192 | ||
LMX1B | Chr9:129377616 | c.140-37_140-21delGGCGCTGACGGCCGGGC | NM_001174146.1 | |||
PEX7 | Chr6:137143759 | c.-45C>T | NM_000288.3 | rs267608252 | ||
PHEX | ChrX:22076478 | c.349+11149A>T | NM_000444.4 | |||
PHEX | ChrX:22113485 | c.849+1268G>T | NM_000444.4 | |||
PHEX | ChrX:22237137 | c.1701-16T>A | NM_000444.4 | |||
PHEX | ChrX:22237393 | c.1768+177_1768+180dupGTAA | NM_000444.4 | |||
PHEX | ChrX:22266301 | c.*231A>G | NM_000444.4 | |||
PLS3 | ChrX:114856534 | c.74-24T>A | NM_005032.5 | |||
PTH1R | Chr3:46939842 | c.544-25_544-23delCTG | NM_000316.2 | |||
PTH1R | Chr3:46942604 | c.1049+29C>T | NM_000316.2 | |||
RMRP | Chr9:35658026 | NR_003051.3 | rs781730798 | |||
RMRP | Chr9:35658026 | NR_003051.3 | ||||
RMRP | Chr9:35658026 | NR_003051.3 | ||||
RMRP | Chr9:35658026 | NR_003051.3 | ||||
RMRP | Chr9:35658027 | NR_003051.3 | rs727502775 | |||
RMRP | Chr9:35658027 | NR_003051.3 | ||||
RMRP | Chr9:35658027 | NR_003051.3 | ||||
RMRP | Chr9:35658027 | NR_003051.3 | ||||
RMRP | Chr9:35658027 | NR_003051.3 | ||||
RMRP | Chr9:35658028 | NR_003051.3 | ||||
RMRP | Chr9:35658028 | NR_003051.3 | ||||
RMRP | Chr9:35658029 | NR_003051.3 | ||||
RMRP | Chr9:35658029 | NR_003051.3 | ||||
RMRP | Chr9:35658032 | NR_003051.3 | ||||
SERPINF1 | Chr17:1665408 | c.-9+2dupT | NM_002615.5 | rs398122519 | ||
SERPINF1 | Chr17:1674512 | c.439+34C>T | NM_002615.5 | |||
SERPINF1 | Chr17:1675121 | c.440-40_440-38delTCG | NM_002615.5 | rs775552455 | ||
SERPINF1 | Chr17:1679209 | c.787-617G>A | NM_002615.5 | |||
SHOX | ChrX:585123 | c.-645_-644insGTT | NM_000451.3 | rs199946685 | ||
SHOX | ChrX:585124 | c.-645_-644insGTT | NM_000451.3 | |||
SHOX | ChrX:591198 | c.-432-3C>A | NM_000451.3 | |||
SHOX | ChrX:591568 | c.-65C>A | NM_000451.3 | |||
SLC26A2 | Chr5:149340544 | c.-26+2T>C | NM_000112.3 | rs386833492 | ||
SOX9 | Chr17:70117348 | c.-185G>A | NM_000346.3 | |||
TCIRG1 | Chr11:67806587 | c.-5+1G>C/T | NM_006019.3 | |||
TCIRG1 | Chr11:67806587 | c.-5+1G>T | NM_006019.3 | |||
TCIRG1 | Chr11:67806587 | c.-5+1G>C | NM_006019.3 | |||
TCIRG1 | Chr11:67816893 | c.1887+132T>C | NM_006019.3 | |||
TCIRG1 | Chr11:67816903 | c.1887+142T>A | NM_006019.3 | |||
TCIRG1 | Chr11:67816907 | c.1887+146G>A | NM_006019.3 | |||
TCIRG1 | Chr11:67816910 | c.1887+149C>T | NM_006019.3 | |||
WDR35 | Chr2:20151929 | c.1434-684G>T | NM_001006657.1 | |||
WDR35 | Chr2:20182313 | c.143-18T>A | NM_001006657.1 | |||
WISP3 | Chr6:112381431 | c.103-763G>T | NM_198239.1 | |||
WISP3 | Chr6:112386227 | c.643+27C>G | NM_198239.1 | rs200472841 |
Test Strengths
This panel includes also a pathogenic intronic variant that is often missed by exome sequencing: *IFITM5* c.-14C>T (rs587776916), which accounts for almost all cases of osteogenesis imperfecta type V (PMID 23240094). Currently, other regions of *IFITM5* gene are not yet covered.
The strengths of this test include:
- CAP accredited laboratory
- CLIA-certified personnel performing clinical testing in a CLIA-certified laboratory
- Powerful sequencing technologies, advanced target enrichment methods and precision bioinformatics pipelines ensure superior analytical performance
- Careful construction of clinically effective and scientifically justified gene panels
- Some of the panels include the whole mitochondrial genome (please see the Panel Content section)
- Our Nucleus online portal providing transparent and easy access to quality and performance data at the patient level
- ~2,000 non-coding disease causing variants in our clinical grade NGS assay for panels (please see ‘Non-coding disease causing variants covered by this panel’ in the Panel Content section)
- Our rigorous variant classification scheme
- Our systematic clinical interpretation workflow using proprietary software enabling accurate and traceable processing of NGS data
- Our comprehensive clinical statements
Test Limitations
The following exons are not included in the panel as they are not sufficiently covered with high quality sequence reads: *ADAMTSL2* (NM_014694:11-19), *SHOX* (NM_006883:6). Genes with suboptimal coverage in our assay are marked with number sign (#) and genes with partial, or whole gene, segmental duplications in the human genome are marked with an asterisk (*) if they overlap with the UCSC pseudogene regions. Gene is considered to have suboptimal coverage when >90% of the gene’s target nucleotides are not covered at >20x with mapping quality score (MQ>20) reads. The technology may have limited sensitivity to detect variants in genes marked with these symbols (please see the Panel content table above).
This test does not detect the following:
- Complex inversions
- Gene conversions
- Balanced translocations
- Some of the panels include the whole mitochondrial genome but not all (please see the Panel Content section)
- Repeat expansion disorders unless specifically mentioned
- Non-coding variants deeper than ±20 base pairs from exon-intron boundary unless otherwise indicated (please see above Panel Content / non-coding variants covered by the panel).
This test may not reliably detect the following:
- Low level mosaicism in nuclear genes (variant with a minor allele fraction of 14.6% is detected with 90% probability)
- Stretches of mononucleotide repeats
- Low level heteroplasmy in mtDNA (>90% are detected at 5% level)
- Indels larger than 50bp
- Single exon deletions or duplications
- Variants within pseudogene regions/duplicated segments
- Some disease causing variants present in mtDNA are not detectable from blood, thus post-mitotic tissue such as skeletal muscle may be required for establishing molecular diagnosis.
The sensitivity of this test may be reduced if DNA is extracted by a laboratory other than Blueprint Genetics.
For additional information, please refer to the Test performance section.
The genes on the panel have been carefully selected based on scientific literature, mutation databases and our experience.
Our panels are sectioned from our high-quality, clinical grade NGS assay. Please see our sequencing and detection performance table for details regarding our ability to detect different types of alterations (Table).
Assays have been validated for various sample types including EDTA-blood, isolated DNA (excluding from formalin fixed paraffin embedded tissue), saliva and dry blood spots (filter cards). These sample types were selected in order to maximize the likelihood for high-quality DNA yield. The diagnostic yield varies depending on the assay used, referring healthcare professional, hospital and country. Plus analysis increases the likelihood of finding a genetic diagnosis for your patient, as large deletions and duplications cannot be detected using sequence analysis alone. Blueprint Genetics’ Plus Analysis is a combination of both sequencing and deletion/duplication (copy number variant (CNV)) analysis.
The performance metrics listed below are from an initial validation performed at our main laboratory in Finland. The performance metrics of our laboratory in Marlborough, MA, are equivalent.
Performance of Blueprint Genetics high-quality, clinical grade NGS sequencing assay for panels.
Sensitivity % (TP/(TP+FN) | Specificity % | |
---|---|---|
Single nucleotide variants | 99.89% (99,153/99,266) | >99.9999% |
Insertions, deletions and indels by sequence analysis | ||
1-10 bps | 99.2% (7,745/7,806) | >99.9999% |
11-50 bps | 99.13% (2,524/2,546) | >99.9999% |
Copy number variants (exon level dels/dups) | ||
1 exon level deletion (heterozygous) | 100% (20/20) | NA |
1 exon level deletion (homozygous) | 100% (5/5) | NA |
1 exon level deletion (het or homo) | 100% (25/25) | NA |
2-7 exon level deletion (het or homo) | 100% (44/44) | NA |
1-9 exon level duplication (het or homo) | 75% (6/8) | NA |
Simulated CNV detection | ||
5 exons level deletion/duplication | 98.7% | 100.00% |
Microdeletion/-duplication sdrs (large CNVs, n=37)) | ||
Size range (0.1-47 Mb) | 100% (25/25) | |
The performance presented above reached by Blueprint Genetics high-quality, clinical grade NGS sequencing assay with the following coverage metrics | ||
Mean sequencing depth | 143X | |
Nucleotides with >20x sequencing coverage (%) | 99.86% |
Performance of Blueprint Genetics Mitochondrial Sequencing Assay.
Sensitivity % | Specificity % | |
---|---|---|
ANALYTIC VALIDATION (NA samples; n=4) | ||
Single nucleotide variants | ||
Heteroplasmic (45-100%) | 100.0% (50/50) | 100.0% |
Heteroplasmic (35-45%) | 100.0% (87/87) | 100.0% |
Heteroplasmic (25-35%) | 100.0% (73/73) | 100.0% |
Heteroplasmic (15-25%) | 100.0% (77/77) | 100.0% |
Heteroplasmic (10-15%) | 100.0% (74/74) | 100.0% |
Heteroplasmic (5-10%) | 100.0% (3/3) | 100.0% |
Heteroplasmic (<5%) | 50.0% (2/4) | 100.0% |
CLINICAL VALIDATION (n=76 samples) | ||
All types | ||
Single nucleotide variants n=2026 SNVs | ||
Heteroplasmic (45-100%) | 100.0% (1940/1940) | 100.0% |
Heteroplasmic (35-45%) | 100.0% (4/4) | 100.0% |
Heteroplasmic (25-35%) | 100.0% (3/3) | 100.0% |
Heteroplasmic (15-25%) | 100.0% (3/3) | 100.0% |
Heteroplasmic (10-15%) | 100.0% (9/9) | 100.0% |
Heteroplasmic (5-10%) | 92.3% (12/13) | 99.98% |
Heteroplasmic (<5%) | 88.9% (48/54) | 99.93% |
Insertions and deletions by sequence analysis n=40 indels | ||
Heteroplasmic (45-100%) 1-10bp | 100.0% (32/32) | 100.0% |
Heteroplasmic (5-45%) 1-10bp | 100.0% (3/3) | 100.0% |
Heteroplasmic (<5%) 1-10bp | 100.0% (5/5) | 99,997% |
SIMULATION DATA /(mitomap mutations) | ||
Insertions, and deletions 1-24 bps by sequence analysis; n=17 | ||
Homoplasmic (100%) 1-24bp | 100.0% (17/17) | 99.98% |
Heteroplasmic (50%) | 100.0% (17/17) | 99.99% |
Heteroplasmic (25%) | 100.0% (17/17) | 100.0% |
Heteroplasmic (20%) | 100.0% (17/17) | 100.0% |
Heteroplasmic (15%) | 100.0% (17/17) | 100.0% |
Heteroplasmic (10%) | 94.1% (16/17) | 100.0% |
Heteroplasmic (5%) | 94.1% (16/17) | 100.0% |
Copy number variants (separate artifical mutations; n=1500) | ||
Homoplasmic (100%) 500 bp, 1kb, 5 kb | 100.0% | 100.0% |
Heteroplasmic (50%) 500 bp, 1kb, 5 kb | 100.0% | 100.0% |
Heteroplasmic (30%) 500 bp, 1kb, 5 kb | 100.0% | 100.0% |
Heteroplasmic (20%) 500 bp, 1kb, 5 kb | 99.7% | 100.0% |
Heteroplasmic (10%) 500 bp, 1kb, 5 kb | 99.0% | 100.0% |
The performance presented above reached by following coverage metrics at assay level (n=66) | ||
Mean of medians | Median of medians | |
Mean sequencing depth MQ0 (clinical) | 18224X | 17366X |
Nucleotides with >1000x MQ0 sequencing coverage (%) (clinical) | 100% | |
rho zero cell line (=no mtDNA), mean sequencing depth | 12X |
The target region for each gene includes coding exons and ±20 base pairs from the exon-intron boundary. In addition, the panel includes non-coding and regulatory variants if listed above (Non-coding variants covered by the panel). Some regions of the gene(s) may be removed from the panel if specifically mentioned in the ‘Test limitations” section above. If the test includes the mitochondrial genome the target region gene list contains the mitochondrial genes. The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. Our pipeline is streamlined to maximize sensitivity without sacrificing specificity. We have incorporated a number of reference population databases and mutation databases including, but not limited, to 1000 Genomes Project, gnomAD, ClinVar and HGMD into our clinical interpretation software to make the process effective and efficient. For missense variants, in silico variant prediction tools such as SIFT, PolyPhen,MutationTaster are used to assist with variant classification. Through our online ordering and statement reporting system, Nucleus, ordering providers have access to the details of the analysis, including patient specific sequencing metrics, a gene level coverage plot and a list of regions with suboptimal coverage (<20X for nuclear genes and <1000X for mtDNA) if applicable. This reflects our mission to build fully transparent diagnostics where ordering providers can easily visualize the crucial details of the analysis process.
We provide customers with comprehensive clinical report available on the market. Clinical interpretation requires a fundamental understanding of clinical genetics and genetic principles. At Blueprint Genetics, our Ph.D. molecular geneticists, medical professionals, and other highly experienced experts prepare clinical reports by evaluating the identified variants in the context of the phenotypic information provided in the requisition form.
Our goal is to provide clinically meaningful reports that are understandable for all medical professionals regardless of whether they have formal training in genetics. Variant classification is the cornerstone of clinical interpretation and resulting patient management decisions. Our classifications follow the ACMG guideline 2015. Sequence and copy number variants classified as pathogenic, likely pathogenic, and variants of uncertain significance (VUS) are confirmed using bidirectional Sanger sequencing or by orthogonal methods such as qPCR/ddPCR when they do not meet our stringent NGS quality metrics for a true positive call.
Our clinical report includes tables for sequence and copy number variants that include basic variant information (genomic coordinates, HGVS nomenclature, zygosity, allele frequencies, in silico predictions, phenotypes, and classification of the variant). In addition, the statement includes detailed descriptions of the variant, gene, and phenotype(s), including the role of the specific gene in human disease, the mutation profile, information about the gene’s variation in population cohorts, and detailed information about related phenotypes. We also provide links to the references, abstracts, and variant databases used to help ordering providers further evaluate the reported findings if desired.
The panel report is divided into primary findings and additional findings sections. Variants reported as primary findings are known disease-causing variants or rare variants that could potentially explain the patient’s phenotype as described to the laboratory at the time of interpretation. The conclusion summarizes all the existing information and provides our rationale for the classification of the variant.
Variants reported as additional findings are variants that are not likely or sufficient to cause the tested patient’s phenotype, based on the current knowledge. Additional findings in panel reports include variants that are, for example, carrierships of single heterozygous variants in genes associated with autosomal recessive disorders, variants of uncertain significance in genes associated with autosomal dominant disorders (if pathogenic or likely pathogenic variants considered sufficient to explain the patient’s phenotype are reported as primary findings), or risk alleles identified in genes included in the panel.
Identification of pathogenic or likely pathogenic variants in dominant disorders or their combinations in different alleles in recessive disorders are considered molecular confirmation of the clinical diagnosis. In these cases, family member testing can be used for risk stratification. We do not recommend using variants of uncertain significance (VUS) for family member risk stratification or patient management. Genetic counseling is recommended.
Our interpretation team analyzes millions of variants from thousands of individuals with rare diseases. Our internal database and our understanding of variants and related phenotypes increases with every case analyzed. Our laboratory is therefore well positioned to reclassify previously reported variants as new information becomes available. If a variant previously reported as a primary or secondary finding by Blueprint Genetics is reclassified so that it becomes diagnostic (VUS to P/LP) or earlier molecular diagnosis is removed (P/LP to VUS, LB, B), our laboratory will issue a follow-up statement to the original ordering healthcare provider at no additional cost.
Other
- GeneReviews - 3M Syndrome
- GeneReviews - Osteogenesis Imperfecta
- GeneReviews - Rhizomelic Chondrodysplasia Punctata Type 1
- GeneReviews - Robinow Syndrome
- GeneReviews - Weill-Marchesani Syndrome
- Little People of America
- Lyhytkasvuiset Ry
- NORD - 3M Syndrome
- NORD - Chondrodysplasia Punctata
- NORD - Dystrophy, Asphyxiating Thoracic
- NORD - Hypophosphatasia
- NORD - Meier-Gorlin Syndrome
- NORD - Osteogenesis Imperfecta
- NORD - Robinow Syndrome
- NORD - Weill-Marchesani Syndrome
- Osteogenesis Imperfecta Foundation
- RhizoKids International
- Robinow Syndrome Foundation
- Walking With Giants Foundation Meier-Gorlin Syndrome