Primary Hyperoxaluria Panel

Test code: KI0801

Is ideal for patients with a clinical suspicion of hyperoxaluria.

The panel cover genes associated with autosomal recessive forms of the disease.

About Primary Hyperoxaluria

The primary hyperoxalurias are rare disorders of glyoxylate metabolism, which result in markedly increased endogenous oxalate synthesis by the liver. They are characterized by an excess of oxalate resulting in manifestations ranging from occasional renal stones, recurrent nephrolithiasis and nephrocalcinosis to end-stage renal disease (ESRD) and systemic oxalosis. Presenting ranges from the neonatal period to adulthood. Among disorders causing hyperoxaluria, the primary hyperoxalurias are the most severe, ultimately leading to ESRD and if untreated, death in most patients. Type I primary hyperoxaluria (PH1), is caused by deficient or absent activity of liver-specific peroxisomal alanine glyoxylate aminotransferase (AGT). In some patients with PH1 type disease, the enzyme is present but mistargeted to mitochondria where it is metabolically inactive. The severe infantile form is characterized by a failure to thrive, nephrocalcinosis with or without nephrolithiasis and early ESRD. Onset in childhood and adolescence is often characterized by recurrent urolithiasis (with or without nephrocalcinosis) and progressive renal failure. The late onset form is characterized by occasional renal stones with onset in adulthood, but acute renal failure caused by bilateral obstruction of the kidneys by oxalate stones may occur. Other manifestations include urinary tract infections, dysuria and hematuria. The ongoing systemic oxalosis also may lead to other clinical manifestations such as cardiac conduction defects, vascular calcification with distal gangrene, disturbed vision, specific brown colored retinal deposits, skin nodules, joint involvement and bone disease leading to fractures in long-term dialysis-dependent patients. The prevalence of PH1 reported in Europe ranges from 1:333,000-1:1,000,000. Higher values are reported in specific populations with a high rate of consanguinity. Primary hyperoxaluria type II (PH2) is a somewhat milder but not benign variant that occurs as a result of deficient glyoxylate reductase/hydroxyypyruvate reductase (GRHPR) enzyme activity. The differential diagnosis includes Dent disease, and familial hypercalciuria-hypomagnesemia-nephrocalcinosis, as well as secondary forms of hyperoxaluria (enteric hyperoxaluria, dietary hyperoxaluria), and idiopathic calcium oxalate urolithiasis. Endogenous hyperoxaluria must be differentiated from the more common secondary forms.

Availability

Results in 3-4 weeks

Gene set description

Genes in the Primary Hyperoxaluria Panel and their clinical significance

<table>
<thead>
<tr>
<th>Gene</th>
<th>Associated phenotypes</th>
<th>Inheritance</th>
<th>ClinVar</th>
<th>HGMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGXT</td>
<td>Hyperoxaluria</td>
<td>AR</td>
<td>190</td>
<td>205</td>
</tr>
<tr>
<td>GRHPR</td>
<td>Hyperoxaluria</td>
<td>AR</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>HOGA1</td>
<td>Hyperoxaluria</td>
<td>AD/AR</td>
<td>37</td>
<td>33</td>
</tr>
</tbody>
</table>

Some regions of the gene are duplicated in the genome. Read more.

The gene has suboptimal coverage (means <90% of the gene’s target nucleotides are covered at >20x with mapping quality score (MQ>20) reads), and/or the gene has exons listed under Test limitations section that are not included in the panel as they are not sufficiently covered with high quality sequence reads.

The sensitivity to detect variants may be limited in genes marked with an asterisk (*) or number sign (#)

Gene refers to the HGNC approved gene symbol; Inheritance refers to inheritance patterns such as autosomal dominant (AD),
autosomal recessive (AR), mitochondrial (mi), X-linked (XL), X-linked dominant (XLD) and X-linked recessive (XLR); ClinVar refers to the number of variants in the gene classified as pathogenic or likely pathogenic in this database (ClinVar); HGMD refers to the number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD). The list of associated, gene specific phenotypes are generated from CGD or Mitomap databases.

Test Strengths

The strengths of this test include:

- CAP accredited laboratory
- CLIA-certified personnel performing clinical testing in a CLIA-certified laboratory
- Powerful sequencing technologies, advanced target enrichment methods and precision bioinformatics pipelines ensure superior analytical performance
- Careful construction of clinically effective and scientifically justified gene panels
- Some of the panels include the whole mitochondrial genome (please see the Panel Content section)
- Our Nucleus online portal providing transparent and easy access to quality and performance data at the patient level
- Our publicly available analytic validation demonstrating complete details of test performance
- ~2,000 non-coding disease causing variants in our clinical grade NGS assay for panels (please see ‘Non-coding disease causing variants covered by this panel’ in the Panel Content section)
- Our rigorous variant classification scheme
- Our systematic clinical interpretation workflow using proprietary software enabling accurate and traceable processing of NGS data
- Our comprehensive clinical statements

Test Limitations

This test does not detect the following:

- Complex inversions
- Gene conversions
- Balanced translocations
- Some of the panels include the whole mitochondrial genome but not all (please see the Panel Content section)
- Repeat expansion disorders unless specifically mentioned
- Non-coding variants deeper than ±20 base pairs from exon-intron boundary unless otherwise indicated (please see above Panel Content / non-coding variants covered by the panel).

This test may not reliably detect the following:

- Low level mosaicism in nuclear genes (variant with a minor allele fraction of 14.6% is detected with 90% probability)
- Stretches of mononucleotide repeats
- Low level heteroplasmia in mtDNA (>90% are detected at 5% level)
- Indels larger than 50bp
- Single exon deletions or duplications
- Variants within pseudogene regions/duplicated segments
- Some disease causing variants present in mtDNA are not detectable from blood, thus post-mitotic tissue such as skeletal muscle may be required for establishing molecular diagnosis.

The sensitivity of this test may be reduced if DNA is extracted by a laboratory other than Blueprint Genetics.

For additional information, please refer to the Test performance section and see our Analytic Validation.

Test performance

The Blueprint Genetics primary hyperoxaluria panel covers classical genes associated with hyperoxaluria, urolithiasis and nephrocalcinosis. The genes on the panel have been carefully selected based on scientific literature, mutation databases and
Our panels are sliced from our high-quality whole exome sequencing data. Please see our sequencing and detection performance table for different types of alterations at the whole exome level (Table).

Assays have been validated for different starting materials including EDTA-blood, isolated DNA (no FFPE), saliva and dry blood spots (filter card) and all provide high-quality results. The diagnostic yield varies substantially depending on the assay used, referring healthcare professional, hospital and country. Blueprint Genetics’ Plus Analysis (Seq+Del/Dup) maximizes the chance to find a molecular genetic diagnosis for your patient although Sequence Analysis or Del/Dup Analysis may be a cost-effective first line test if your patient’s phenotype is suggestive of a specific mutation type.

The genes on the panel have been carefully selected based on scientific literature, mutation databases and our experience. Our panels are sectioned from our high-quality, clinical grade NGS assay. Please see our sequencing and detection performance table for details regarding our ability to detect different types of alterations (Table).

<table>
<thead>
<tr>
<th>Alteration Type</th>
<th>Sensitivity % (TP/(TP+FN))</th>
<th>Specificity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single nucleotide variants</td>
<td>99.89% (99,153/99,266)</td>
<td>>99.9999%</td>
</tr>
<tr>
<td>Insertions, deletions and indels by sequence analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-10 bps</td>
<td>96.9% (7,563/7,806)</td>
<td>>99.9999%</td>
</tr>
<tr>
<td>11-50 bps</td>
<td>99.13% (2,524/2,546)</td>
<td>>99.9999%</td>
</tr>
<tr>
<td>Copy number variants (exon level dels/dups)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 exon level deletion (heterozygous)</td>
<td>100% (20/20)</td>
<td>NA</td>
</tr>
<tr>
<td>1 exon level deletion (homozygous)</td>
<td>100% (5/5)</td>
<td>NA</td>
</tr>
<tr>
<td>1 exon level deletion (het or homo)</td>
<td>100% (25/25)</td>
<td>NA</td>
</tr>
<tr>
<td>2-7 exon level deletion (het or homo)</td>
<td>100% (44/44)</td>
<td>NA</td>
</tr>
<tr>
<td>1-9 exon level duplication (het or homo)</td>
<td>75% (6/8)</td>
<td>NA</td>
</tr>
<tr>
<td>Simulated CNV detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 exons level deletion/duplication</td>
<td>98.7%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Microdeletion/-duplication sdrs (large CNVs, n=37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size range (0.1-47 Mb)</td>
<td>100% (37/37)</td>
<td></td>
</tr>
</tbody>
</table>

The performance presented above reached by Blueprint Genetics high-quality, clinical grade NGS sequencing assay with the following coverage metrics:

- Mean sequencing depth: 143X
- Nucleotides with >20x sequencing coverage (%): 99.86%

Performance of Blueprint Genetics Mitochondrial Sequencing Assay.

<table>
<thead>
<tr>
<th>Mitochondrial Sequencing Assay</th>
<th>Sensitivity % (TP/(TP+FN))</th>
<th>Specificity</th>
</tr>
</thead>
</table>

https://blueprintgenetics.com/
ANALYTIC VALIDATION (NA samples; n=4)

<table>
<thead>
<tr>
<th>Single nucleotide variants</th>
<th>100.0% (50/50)</th>
<th>100.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heteroplasmic (45-100%)</td>
<td>100.0% (87/87)</td>
<td>100.0%</td>
</tr>
<tr>
<td>Heteroplasmic (35-45%)</td>
<td>100.0% (73/73)</td>
<td>100.0%</td>
</tr>
<tr>
<td>Heteroplasmic (25-35%)</td>
<td>100.0% (77/77)</td>
<td>100.0%</td>
</tr>
<tr>
<td>Heteroplasmic (15-25%)</td>
<td>100.0% (74/74)</td>
<td>100.0%</td>
</tr>
<tr>
<td>Heteroplasmic (10-15%)</td>
<td>100.0% (3/3)</td>
<td>100.0%</td>
</tr>
<tr>
<td>Heteroplasmic (5-10%)</td>
<td>50.0% (2/4)</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

CLINICAL VALIDATION (n=76 samples)

<table>
<thead>
<tr>
<th>All types</th>
<th>100.0% (1940/1940)</th>
<th>100.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single nucleotide variants n=2084 SNVs</td>
<td>100.0% (4/4)</td>
<td>100.0%</td>
</tr>
<tr>
<td>Heteroplasmic (45-100%)</td>
<td>100.0% (3/3)</td>
<td>100.0%</td>
</tr>
<tr>
<td>Heteroplasmic (15-25%)</td>
<td>100.0% (9/9)</td>
<td>100.0%</td>
</tr>
<tr>
<td>Heteroplasmic (5-10%)</td>
<td>92.3% (12/13)</td>
<td>99.98%</td>
</tr>
<tr>
<td>Heteroplasmic (<5%)</td>
<td>88.7% (47/53)</td>
<td>99.93%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insertions and deletions by sequence analysis n=42 indels</th>
<th>100.0% (32/32)</th>
<th>100.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heteroplasmic (45-100%) 1-10bp</td>
<td>100.0% (3/3)</td>
<td>100.0%</td>
</tr>
<tr>
<td>Heteroplasmic (<5%) 1-10bp</td>
<td>100.0% (5/5)</td>
<td>>0.9999</td>
</tr>
</tbody>
</table>

SIMULATION DATA /(mitomap mutations)

| Insertions, and deletions 1-24 bps by sequence analysis; n=17 | 100.0% (17/17) | 99.98% |
Heteroplasmic (5%) | 94.1% (16/17) | 100.0%
Copy number variants (separate artificial mutations; n=1500)

Homoplasmic (100%) 500 bp, 1kb, 5 kb | 100.0% | 100.0%
Heteroplasmic (50%) 500 bp, 1kb, 5 kb | 100.0% | 100.0%
Heteroplasmic (30%) 500 bp, 1kb, 5 kb | 100.0% | 100.0%
Heteroplasmic (20%) 500 bp, 1kb, 5 kb | 99.7% | 100.0%
Heteroplasmic (10%) 500 bp, 1kb, 5 kb | 99.0% | 100.0%

The performance presented above reached by following coverage metrics at assay level (n=66)

<table>
<thead>
<tr>
<th>Mean of medians</th>
<th>Median of medians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean sequencing depth MQ0 (clinical)</td>
<td>18224X</td>
</tr>
<tr>
<td>Nucleotides with >1000x MQ0 sequencing coverage (%) (clinical)</td>
<td>100%</td>
</tr>
<tr>
<td>rho zero cell line (=no mtDNA), mean sequencing depth</td>
<td>12X</td>
</tr>
</tbody>
</table>

Bioinformatics

The target region for each gene includes coding exons and ±20 base pairs from the exon-intron boundary. In addition, the panel includes non-coding variants if listed above (Non-coding variants covered by the panel). Some regions of the gene(s) may be removed from the panel if specifically mentioned in the ‘Test limitations” section above. The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. Our pipeline is streamlined to maximize sensitivity without sacrificing specificity. We have incorporated a number of reference population databases and mutation databases such as, but not limited, to 1000 Genomes Project, gnomAD, ClinVar and HGMD into our clinical interpretation software to make the process effective and efficient. For missense variants, in silico variant prediction tools such as SIFT, PolyPhen, MutationTaster are used to assist with variant classification. Through our online ordering and statement reporting system, Nucleus, the customer has an access to details of the analysis, including patient specific sequencing metrics, a gene level coverage plot and a list of regions with inadequate coverage if present. This reflects our mission to build fully transparent diagnostics where customers have easy access to crucial details of the analysis process.

Clinical interpretation

We provide customers with the most comprehensive clinical report available on the market. Clinical interpretation requires a fundamental understanding of clinical genetics and genetic principles. At Blueprint Genetics, our PhD molecular geneticists, medical geneticists and clinical consultants prepare the clinical statement together by evaluating the identified variants in the context of the phenotypic information provided in the requisition form. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals regardless of whether they have formal training in genetics.

Variant classification is the cornerstone of clinical interpretation and resulting patient management decisions. Our classifications follow the Blueprint Genetics Variant Classification Schemes based on the ACMG guideline 2015. Minor modifications were made to increase reproducibility of the variant classification and improve the clinical validity of the report. Our experience with tens of thousands of clinical cases analyzed at our laboratory allowed us to further develop the industry standard.

The final step in the analysis of sequence variants is confirmation of variants classified as pathogenic or likely pathogenic using bi-directional Sanger sequencing. Variant(s) fulfilling the following criteria are not Sanger confirmed: the variant quality
score is above the internal threshold for a true positive call, and visual check-up of the variant at IGV is in-line with the variant call. Reported variants of uncertain significance are confirmed with bi-directional Sanger sequencing only if the quality score is below our internally defined quality score for true positive call. Reported copy number variations with a size <10 exons are confirmed by orthogonal methods such as qPCR if the specific CNV has been seen less than three times at Blueprint Genetics.

Our clinical statement includes tables for sequencing and copy number variants that include basic variant information (genomic coordinates, HGVS nomenclature, zygosity, allele frequencies, in silico predictions, OMIM phenotypes and classification of the variant). In addition, the statement includes detailed descriptions of the variant, gene and phenotype(s) including the role of the specific gene in human disease, the mutation profile, information about the gene’s variation in population cohorts and detailed information about related phenotypes. We also provide links to the references used, congress abstracts and mutation variant databases used to help our customers further evaluate the reported findings if desired. The conclusion summarizes all of the existing information and provides our rationale for the classification of the variant.

Identification of pathogenic or likely pathogenic variants in dominant disorders or their combinations in different alleles in recessive disorders are considered molecular confirmation of the clinical diagnosis. In these cases, family member testing can be used for risk stratification within the family. In the case of variants of uncertain significance (VUS), we do not recommend family member risk stratification based on the VUS result. Furthermore, in the case of VUS, we do not recommend the use of genetic information in patient management or genetic counseling.

Our interpretation team analyzes millions of variants from thousands of individuals with rare diseases. Thus, our database, and our understanding of variants and related phenotypes, is growing by leaps and bounds. Our laboratory is therefore well positioned to re-classify previously reported variants as new information becomes available. If a variant previously reported by Blueprint Genetics is re-classified, our laboratory will issue a follow-up statement to the original ordering health care provider at no additional cost.

ICD codes

Commonly used ICD-10 codes when ordering the Primary Hyperoxaluria Panel

<table>
<thead>
<tr>
<th>ICD-10</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>E74.8</td>
<td>Hyperoxaluria</td>
</tr>
</tbody>
</table>

Accepted sample types

- EDTA blood, min. 1 ml
- Purified DNA, min. 3μg*
- Saliva (Oragene DNA OG-500 kit)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

Note that we do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue.

Resources

- GeneReviews - Primary Hyperoxaluria Type 1
- GeneReviews - Primary Hyperoxaluria Type 2
- GeneReviews - Primary Hyperoxaluria Type 3
- NORD - Primary Hyperoxaluria
- National Organization for Rare Disorders
- Oxalosis and Hyperoxaluria Foundation