Flecked Retina Disorders Panel

Summary
  • Is a 12 gene panel that includes assessment of non-coding variants
  • Is ideal for patients with a clinical suspicion / diagnosis of a flecked retina disorder.

Analysis methods
  • PLUS
  • SEQ
  • DEL/DUP
Availability

4 weeks

Number of genes

12

Test code

OP1401

Panel size

Small

CPT codes
SEQ 81479
DEL/DUP 81479

Summary

The Blueprint Genetics Flecked Retina Disorders Panel (test code OP1401):

ICD codes

Commonly used ICD-10 code(s) when ordering the Flecked Retina Disorders Panel

ICD-10 Disease
H35.50 Stargardt disease
H35.9 Flecked retina disorder
Q14.1 X-linked retinoschisis
Q87.89 Cohen syndrome
H35.50 Retinitis punctata albescens
H15.9 Bietti crystalline dystrophy
H35.50 Fundus albipunctatus
H31.21 Choroideremia

Sample Requirements

  • Blood (min. 1ml) in an EDTA tube
  • Extracted DNA, min. 2 μg in TE buffer or equivalent
  • Saliva (Oragene DNA OG-500 kit/OGD-500 or OG-575 & OGD-575)

Label the sample tube with your patient's name, date of birth and the date of sample collection.

Note that we do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue. Read more about our sample requirements here.

Please include fundus photographs, electroretinogram (ERG) findings, visual field findings and visual acuity, if available, for expert review and clinical correlation with test results

Flecked retina disorders are a group of conditions characterized by multiple yellow-white retinal lesions of various size and configuration, without vascular or optic nerve abnormalities. Flecked retina disorders may be stationary or progressive and range from benign to visually devastating. Fundus albipunctatus is an autosomal recessive flecked retinal disorder and is caused by mutations in the RDH5 or RLBP1 gene. Stargardt disease or fundus flavimaculatus is a progressive form of juvenile macular degeneration with considerable clinical and genetic heterogeneity. Stargardt disease is caused by mutations in ABCA4, and the inheritance pattern is autosomal recessive. Variants in ELOVL4 are associated with autosomal dominant Stargardt disease 3. Bietti crystalline dystrophy is inherited in an autosomal recessive manner and is caused by mutations in CYP4V2.

Genes in the Flecked Retina Disorders Panel and their clinical significance

Gene Associated phenotypes Inheritance ClinVar HGMD
ABCA4 Stargardt disease, Retinitis pigmentosa, Cone rod dystrophy, Retinal dystrophy, early-onset severe, Fundus flavimaculatus AR 308 1231
CHM Choroideremia XL 46 284
CYP4V2 Retinitis pigmentosa, Bietti crystalline corneoretinal dystrophy AR 31 94
ELOVL4 Stargardt disease, Icthyosis, spastic quadriplegia, and mental retardation, Spinocerebellar ataxia AD/AR 13 14
PLA2G5 Fleck retina, familial benign AR 1 7
PROM1# Stargardt disease, Retinitis pigmentosa, Cone rod dystrophy, Macular dystrophy, retinal, AD/AR 22 80
PRPH2 Choriodal dystrophy, central areolar, Macular dystrophy, vitelliform, Retinitis pigmentosa, Retinitis punctata albescens, Macula dystrophy, patterned AD/Digenic 48 176
RDH5 Fundus albipunctatus AR 11 51
RHO Retinitis pigmentosa, Night blindness, congenital stationary, Retinitis punctata albescens AD/AR 58 212
RLBP1 Newfoundland rod-cone dystrophy, Fundus albipunctatus, Bothnia retinal dystrophy, Retinitis punctata albescens AR 9 37
RS1 Retinoschisis XL 44 262
VPS13B Cohen syndrome AR 351 203

* Some, or all, of the gene is duplicated in the genome. Read more.

# The gene has suboptimal coverage (means <90% of the gene’s target nucleotides are covered at >20x with mapping quality score (MQ>20) reads).

The sensitivity to detect variants may be limited in genes marked with an asterisk (*) or number sign (#)

Gene refers to the HGNC approved gene symbol; Inheritance refers to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR), X-linked (XL), X-linked dominant (XLD) and X-linked recessive (XLR); ClinVar refers to the number of variants in the gene classified as pathogenic or likely pathogenic in this database (ClinVar); HGMD refers to the number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD). The list of associated, gene specific phenotypes are generated from CGD or Orphanet databases.

Non-coding variants covered by Flecked Retina Disorders Panel

Gene Genomic location HG19 HGVS RefSeq RS-number
ABCA4 Chr1:94468019 c.6148-471C>T NM_000350.2
ABCA4 Chr1:94484001 c.5196+1137G>A NM_000350.2 rs778234759
ABCA4 Chr1:94484001 c.5196+1137G>T NM_000350.2
ABCA4 Chr1:94484082 c.5196+1056A>G NM_000350.2
ABCA4 Chr1:94492937 c.4539+2064C>T NM_000350.2
ABCA4 Chr1:94492973 c.4539+2028C>T NM_000350.2 rs869320785
ABCA4 Chr1:94493000 c.4539+2001G>A NM_000350.2
ABCA4 Chr1:94493073 c.4539+1928C>T NM_000350.2
ABCA4 Chr1:94493272 c.4539+1729G>T NM_000350.2
ABCA4 Chr1:94509799 c.3050+370C>T NM_000350.2
ABCA4 Chr1:94525509 c.2160+584A>G NM_000350.2
ABCA4 Chr1:94526934 c.1938-619A>G NM_000350.2
ABCA4 Chr1:94566773 c.570+1798A>G NM_000350.2
ABCA4 Chr1:94576926 c.302+68C>T NM_000350.2 rs761188244
ABCA4 Chr1:94578638 c.67-16T>A NM_000350.2
CHM ChrX:85220593 c.315-1536A>G NM_000390.2
CHM ChrX:85223644 c.315-4587T>A NM_000390.2
PROM1 Chr4:15989860 c.2077-521A>G NM_006017.2 rs796051882
PRPH2 Chr6:42666249 c.829-4C>G NM_000322.4

Test Strengths

The strengths of this test include:
  • CAP and ISO-15189 accreditations covering all operations at Blueprint Genetics including all Whole Exome Sequencing, NGS panels and confirmatory testing
  • CLIA-certified personnel performing clinical testing in a CLIA-certified laboratory
  • Powerful sequencing technologies, advanced target enrichment methods and precision bioinformatics pipelines ensure superior analytical performance
  • Careful construction of clinically effective and scientifically justified gene panels
  • Our Nucleus online portal providing transparent and easy access to quality and performance data at the patient level
  • Our publically available analytic validation demonstrating complete details of test performance
  • ~1,500 non-coding disease causing variants in Blueprint WES assay (please see below ‘Non-coding disease causing variants covered by this panel’)
  • Our rigorous variant classification based on modified ACMG variant classification scheme
  • Our systematic clinical interpretation workflow using proprietary software enabling accurate and traceable processing of NGS data
  • Our comprehensive clinical statements

Test Limitations

Genes with suboptimal coverage in our assay are marked with number sign (#). Gene is considered to have suboptimal coverage when >90% of the gene's target nucleotides are not covered at >20x with mapping quality score (MQ>20) reads. The technology may have limited sensitivity to detect variants in genes marked with these symbols (please see the Panel content table above).

This test does not detect the following:
  • Complex inversions
  • Gene conversions
  • Balanced translocations
  • Mitochondrial DNA variants
  • Repeat expansion disorders unless specifically mentioned
  • Non-coding variants deeper than ±20 base pairs from exon-intron boundary unless otherwise indicated (please see above Panel Content / non-coding variants covered by the panel).
This test may not reliably detect the following:
  • Low level mosaicism (variant with a minor allele fraction of 14.6% is detected with 90% probability)
  • Stretches of mononucleotide repeats
  • Indels larger than 50bp
  • Single exon deletions or duplications
  • Variants within pseudogene regions/duplicated segments

The sensitivity of this test may be reduced if DNA is extracted by a laboratory other than Blueprint Genetics.

For additional information, please refer to the Test performance section and see our Analytic Validation.

The Blueprint Genetics flecked retina disorders panel covers classical genes associated with Stargardt disease, flecked retina disorder, x-linked retinoschisis, Cohen syndrome, retinitis punctata albescens, Bietti crystalline dystrophy, fundus albipunctatus and choroideremia. The genes on the panel have been carefully selected based on scientific literature, mutation databases and our experience.

Our panels are sliced from our high-quality whole exome sequencing data. Please see our sequencing and detection performance table for different types of alterations at the whole exome level (Table).

Assays have been validated for different starting materials including EDTA-blood, isolated DNA (no FFPE), saliva and dry blood spots (filter card) and all provide high-quality results. The diagnostic yield varies substantially depending on the assay used, referring healthcare professional, hospital and country. Blueprint Genetics' Plus Analysis (Seq+Del/Dup) maximizes the chance to find a molecular genetic diagnosis for your patient although Sequence Analysis or Del/Dup Analysis may be a cost-effective first line test if your patient's phenotype is suggestive of a specific mutation type.

Performance of Blueprint Genetics Whole Exome Sequencing (WES) assay. All individual panels are sliced from WES data.

Sensitivity % (TP/(TP+FN) Specificity %
Single nucleotide variants 99.65% (412,456/413,893) >99.99%
Insertions, deletions and indels by sequence analysis
1-10 bps 96.94% (17,070/17,608) >99.99%
11-50 bps 99.07% (957/966) >99.99%
Copy number variants (exon level dels/dups)
Clinical samples (small CNVs, n=52)
1 exon level deletion 92.3% (24/26) NA
2 exons level deletion/duplication 100.0% (11/11) NA
3-7 exons level deletion/duplication 93.3% (14/15) NA
Microdeletion/-duplication sdrs (large CNVs, n=37))
Size range (0.1-47 Mb) 100% (37/37)
Simulated CNV detection
2 exons level deletion/duplication 90.98% (7,357/8,086) 99.96%
5 exons level deletion/duplication 98.63% (7,975/8,086) 99.98%
     
The performance presented above reached by WES with the following coverage metrics
     
Mean sequencing depth at exome level 174x
Nucleotides with >20x sequencing coverage (%) 99.4%

Bioinformatics

The target region for each gene includes coding exons and ±20 base pairs from the exon-intron boundary. In addition, the panel includes non-coding variants if listed above (Non-coding variants covered by the panel). Some regions of the gene(s) may be removed from the panel if specifically mentioned in the ‘Test limitations” section above. The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. Our pipeline is streamlined to maximize sensitivity without sacrificing specificity. We have incorporated a number of reference population databases and mutation databases such as, but not limited, to 1000 Genomes Project, gnomAD, ClinVar and HGMD into our clinical interpretation software to make the process effective and efficient. For missense variants, in silico variant prediction tools such as SIFT, PolyPhen, MutationTaster are used to assist with variant classification. Through our online ordering and statement reporting system, Nucleus, the customer has an access to details of the analysis, including patient specific sequencing metrics, a gene level coverage plot and a list of regions with inadequate coverage if present. This reflects our mission to build fully transparent diagnostics where customers have easy access to crucial details of the analysis process.

Clinical interpretation

We provide customers with the most comprehensive clinical report available on the market. Clinical interpretation requires a fundamental understanding of clinical genetics and genetic principles. At Blueprint Genetics, our PhD molecular geneticists, medical geneticists and clinical consultants prepare the clinical statement together by evaluating the identified variants in the context of the phenotypic information provided in the requisition form. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals regardless of whether they have formal training in genetics.

Variant classification is the corner stone of clinical interpretation and resulting patient management decisions. Our classifications follow the Blueprint Genetics Variant Classification Schemes based on the ACMG guideline 2015. Minor modifications were made to increase reproducibility of the variant classification and improve the clinical validity of the report. Our experience with tens of thousands of clinical cases analyzed at our laboratory allowed us to further develop the industry standard.

The final step in the analysis is orthogonal confirmation. Sequence variants classified as pathogenic, likely pathogenic and variants of uncertain significance (VUS) are confirmed using bi-directional Sanger sequencing when they do not meet our stringent NGS quality metrics for a true positive call.
Reported copy number variations with a size <10 exons are confirmed by orthogonal methods such as qPCR if the specific CNV has been seen less than three times at Blueprint Genetics (Plus analysis only).

Our clinical statement includes tables for sequencing and copy number variants that include basic variant information (genomic coordinates, HGVS nomenclature, zygosity, allele frequencies, in silico predictions, OMIM phenotypes and classification of the variant). In addition, the statement includes detailed descriptions of the variant, gene and phenotype(s) including the role of the specific gene in human disease, the mutation profile, information about the gene’s variation in population cohorts and detailed information about related phenotypes. We also provide links to the references used, congress abstracts and mutation databases to help our customers further evaluate the reported findings if desired. The conclusion summarizes all of the existing information and provides our rationale for the classification of the variant.

Identification of pathogenic or likely pathogenic variants in dominant disorders or their combinations in different alleles in recessive disorders are considered molecular confirmation of the clinical diagnosis. In these cases, family member testing can be used for risk stratification within the family. In the case of variants of uncertain significance (VUS), we do not recommend family member risk stratification based on the VUS result. Furthermore, in the case of VUS, we do not recommend the use of genetic information in patient management or genetic counseling.

Our interpretation team analyzes millions of variants from thousands of individuals with rare diseases. Thus, our database, and our understanding of variants and related phenotypes, is growing by leaps and bounds. Our laboratory is therefore well positioned to re-classify previously reported variants as new information becomes available. If a variant previously reported by Blueprint Genetics is re-classified, our laboratory will issue a follow-up statement to the original ordering health care provider at no additional cost.

Subscribe to our newsletter