Neuro-Ophthalmology Panel

  • bpg-method PLUS
  • bpg-method SEQ
  • bpg-method DEL/DUP

Test code: OP1301

The Blueprint Genetics Neuro-Ophthalmology Panel is a 26 gene test for genetic diagnostics of patients with clinical suspicion of nystagmus, optic atrophy or progressive external ophthalmoplegia.

This covers genes associated with both isolated and syndomic neuro-ophthalmological diseases.The inheritance may by autosomal dominant, autosomal recessive or X-linked. This panel includes the Optic Atrophy Panel.

About Neuro-Ophthalmology

Neuro-ophthalmological disorders refer to a group of diseases that affect vision, control of eye movements, or pupillary reflexes. This entity includes diseases restricted to the visual system and systemic diseases in which the neuro-ophthalmologic sign is accompanied with a spectrum of other neurological symptoms. Optic atrophy affects primarily the retinal ganglion cells and nerve fiber layer of the retina leading to decreased visual acuity (see the description of Optic Atrophy Panel for details). Congenital nystagmus is defined as conjugated, spontaneous and involuntary ocular oscillations that appear at birth or during the first three months of life. Binocular vision and color vision are normal and visual acuity is typically better than 6/12. Mutations in the X-chromosomal gene FRMD7 explain approximately 85% of patients with congenital nystagmus. Female mutation carriers can be affected. The prevalence of congenital nystagmus is estimated to be 1:3,000. Examples of syndromes associated with eye movement problems are ataxia with oculomotor apraxia type 1 and 2, caused by mutations in APTX and SETX, respectively; horizontal gaze palsy with progressive scoliosis is caused by mutations in ROBO3. Mutations in TUBB3 are associated with an autosomal dominant strabismus syndrome called congenital fibrosis of the extraocular muscles. Mitochondrial diseases frequently manifest neuro-ophthalmologic symptoms and signs. Progressive external ophthalmoplegia (PEO) is characterized by weakness of the eye muscles. The symptoms in PEO include drooping eyelids (ptosis) and weakness or paralysis of the muscles that move the eye (ophthalmoplegia), and in some cases skeletal muscle myopathy. Autosomal dominant PEO is caused by mutations in POLG, SLC25A4, and C10orf2. Ophthalmoplegia may also be associated with mitochondrial DNA depletion syndromes, which are a genetically and clinically heterogeneous group of autosomal recessive disorders (PMID: 23385875).

Availability

Results in 3-4 weeks. We do not offer a maternal cell contamination (MCC) test at the moment. We offer prenatal testing only for cases where the maternal cell contamination studies (MCC) are done by a local genetic laboratory. Read more: http://blueprintgenetics.com/faqs/#prenatal

Genes in the Neuro-Ophthalmology Panel and their clinical significance
Gene Associated phenotypes Inheritance ClinVar HGMD
APTX Ataxia, early-onset, with oculomotor apraxia and hypoalbuminemia AR 14 40
C10ORF2 Perrault syndrome, Mitochondrial DNA depletion syndrome AR 37
C12ORF65 Spastic paraplegia, Combined oxidative phosphorylation deficiency AR 10 10
FRMD7 Nystagmus, infantile periodic alternating XL 14 90
GPR143 Nystagmus, congenital, Ocular albinism XL 19 148
HESX1 Septooptic dysplasia, Pituitary hormone deficiency, combined AR/AD 11 26
MFN2 Hereditary motor and sensory neuropathy, Charcot-Marie-Tooth disease AD/AR 52 218
NDUFS1 Mitochondrial complex I deficiency AR 22 25
OPA1 Optic atrophy AD/AR 80 372
OPA3 Optic atrophy, 3-methylglutaconic aciduria AD/AR 8 15
OTX2 Microphthalmia, syndromic, Pituitary hormone deficiency, combined, Retinal dystrophy, early-onset, and pituitary dysfunction AD 17 65
PAX6 Aniridia, cerebellar ataxia, and mental retardation (Gillespie syndrome), Keratitis, Coloboma, ocular, Cataract with late-onset corneal dystrophy, Morning glory disc anomaly, Foveal hypoplasia, Aniridia, Optic nerve hypoplasia, Peters anomaly AD 106 473
POLG POLG-related ataxia neuropathy spectrum disorders, Sensory ataxia, dysarthria, and ophthalmoparesis, Alpers syndrome, Progressive external ophthalmoplegia with mitochondrial DNA deletions, Mitochondrial DNA depletion syndrome AD/AR 92 274
ROBO3 Gaze palsy, horizontal, with progressive scoliosis AR 15 35
RRM2B Progressive external ophthalmoplegia with mitochondrial DNA deletions, Mitochondrial DNA depletion syndrome AD/AR 41 40
SALL4 Acro-renal-ocular syndrome, Duane-radial ray/Okohiro syndrome AD 17 50
SETX Ataxia with oculomotor apraxia, Amyotrophic lateral sclerosis, juvenile, Spinocerebellar ataxia AD/AR 27 190
SLC25A4 Progressive external ophthalmoplegia with mitochondrial DNA deletions, Mitochondrial DNA depletion syndrome AD/AR 12 13
SOX2* Microphthalmia, syndromic AD 25 99
SPG7 Spastic paraplegia AR 53 104
TIMM8A* Mohr-Tranebjaerg syndrome, Jensen syndrome, Opticoacoustic nerve atrophy with dementia XL 10 21
TK2 Mitochondrial DNA depletion syndrome AR 38 45
TMEM126A Optic atrophy AR 2 1
TUBB3* Fibrosis of extraocular muscles, congenital, Cortical dysplasia, complex, with other brain malformations AD/AR 27 24
TYMP Mitochondrial DNA depletion syndrome AR 85 94
WFS1 Wolfram syndrome, Deafness AD/AR 65 343

*Some regions of the gene are duplicated in the genome leading to limited sensitivity within the regions. Thus, low-quality variants are filtered out from the duplicated regions and only high-quality variants confirmed by other methods are reported out. Read more.

Gene, refers to HGNC approved gene symbol; Inheritance to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL); ClinVar, refers to a number of variants in the gene classified as pathogenic or likely pathogenic in ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/); HGMD, refers to a number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/). The list of associated (gene specific) phenotypes are generated from CDG (http://research.nhgri.nih.gov/CGD/) or Orphanet (http://www.orpha.net/) databases.

Gene Genomic location HG19 HGVS RefSeq RS-number
PAX6 Chr11:31832374 c.-129+2T>A NM_000280.4
TIMM8A ChrX:100601671 c.133-23A>C NM_004085.3 rs869320666

The strengths of this test include:

  • Blueprint Genetics is one of the few laboratories worldwide with CAP and ISO-15189 accreditation for NGS panels and CLIA certification
  • Superior sequencing quality
  • Careful selection of genes based on current literature, our experience and the most current mutation databases
  • Transparent and easy access to quality and performance data at the patient level that are accessible via our Nucleus portal
  • Transparent and reproducible analytical validation for each panel (see Test performance section; for complete details, see our Analytic Validation)
  • Sequencing and high resolution del/dup analysis available in one test
  • Inclusion of non-coding disease causing variants where clinically indicated (please see individual Panel descriptions)
  • Interpretation of variants following ACMG variant classification guidelines
  • Comprehensive clinical statement co-written by a PhD geneticist and a clinician specialist

 

This test does not detect the following:

  • Complex inversions
  • Gene conversions
  • Balanced translocations
  • Mitochondrial DNA variants
  • Variants in regulatory or non-coding regions of the gene unless otherwise indicated (please see Non-coding disease causing variants covered by the panel). This mean for instance intronic variants locating deeper than 15 nucleotides from the exon-intron boundary.

 

This test may not reliably detect the following:

  • Low level mosaicism
  • Stretches of mononucleotide repeats
  • Indels larger than 50bp
  • Single exon deletions or duplications
  • Variants within pseudogene regions/duplicated segments
  • Disorders caused by long repetitive sequences (e.g. trinucleotide repeat expansions)

 

The sensitivity of this test may be reduced if DNA is extracted by a laboratory other than Blueprint Genetics.

For additional information, please refer to the Test performance section and see our Analytic Validation.

Blueprint Genetics offers a comprehensive Neuro-Ophthalmology Panel that covers classical genes associated with acro-renal-ocular syndrome, ataxia – oculomotor apraxia, horizontal gaze palsy with progressive scoliosis, Mohr-Tranebjaerg syndrome, nystagmus, nystagmus 1, congenital, X-linked, optic atrophy, progressive external ophthalmoplegia, septo-optic dysplasia and Wolfram syndrome. The genes are carefully selected based on the existing scientific evidence, our experience and most current mutation databases. Candidate genes are excluded from this first-line diagnostic test. The test does not recognise balanced translocations or complex inversions, and it may not detect low-level mosaicism. The test should not be used for analysis of sequence repeats or for diagnosis of disorders caused by mutations in the mitochondrial DNA.

Analytical validation is a continuous process at Blueprint Genetics. Our mission is to improve the quality of the sequencing process and each modification is followed by our standardized validation process. Average sensitivity and specificity in Blueprint NGS Panels is 99.3% and 99.9% for detecting SNPs. Sensitivity to for indels vary depending on the size of the alteration: 1-10bps (96.0%), 11-20 bps (88.4%) and 21-30 bps (66.7%). The longest detected indel was 46 bps by sequence analysis. Detection limit for Del/Dup (CNV) analysis varies through the genome depending on exon size, sequencing coverage and sequence content. The sensitivity is 71.5% for single exon deletions and duplications and 99% for three exons’ deletions and duplications. We have validated the assays for different starting materials including EDTA-blood, isolated DNA (no FFPE) and saliva that all provide high-quality results. The diagnostic yield varies substantially depending on the used assay, referring healthcare professional, hospital and country. Blueprint Genetics’ Plus Analysis (Seq+Del/Dup) maximizes the chance to find molecular genetic diagnosis for your patient although Sequence Analysis or Del/Dup Analysis may be cost-effective first line test if your patient’s phenotype is suggestive for a specific mutation profile.

The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. The highest relevance in the reported variants is achieved through elimination of false positive findings based on variability data for thousands of publicly available human reference sequences and validation against our in-house curated mutation database as well as the most current and relevant human mutation databases. Reference databases currently used are the 1000 Genomes Project (http://www.1000genomes.org), the NHLBI GO Exome Sequencing Project (ESP; http://evs.gs.washington.edu/EVS), the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org), ClinVar database of genotype-phenotype associations (http://www.ncbi.nlm.nih.gov/clinvar) and the Human Gene Mutation Database (http://www.hgmd.cf.ac.uk). The consequence of variants in coding and splice regions are estimated using the following in silico variant prediction tools: SIFT (http://sift.jcvi.org), Polyphen (http://genetics.bwh.harvard.edu/pph2/), and Mutation Taster (http://www.mutationtaster.org).

Through our online ordering and statement reporting system, Nucleus, the customer can access specific details of the analysis of the patient. This includes coverage and quality specifications and other relevant information on the analysis. This represents our mission to build fully transparent diagnostics where the customer gains easy access to crucial details of the analysis process.

In addition to our cutting-edge patented sequencing technology and proprietary bioinformatics pipeline, we also provide the customers with the best-informed clinical report on the market. Clinical interpretation requires fundamental clinical and genetic understanding. At Blueprint Genetics our geneticists and clinicians, who together evaluate the results from the sequence analysis pipeline in the context of phenotype information provided in the requisition form, prepare the clinical statement. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals, even without training in genetics.

Variants reported in the statement are always classified using the Blueprint Genetics Variant Classification Scheme modified from the ACMG guidelines (Richards et al. 2015), which has been developed by evaluating existing literature, databases and with thousands of clinical cases analyzed in our laboratory. Variant classification forms the corner stone of clinical interpretation and following patient management decisions. Our statement also includes allele frequencies in reference populations and in silico predictions. We also provide PubMed IDs to the articles or submission numbers to public databases that have been used in the interpretation of the detected variants. In our conclusion, we summarize all the existing information and provide our rationale for the classification of the variant.

A final component of the analysis is the Sanger confirmation of the variants classified as likely pathogenic or pathogenic. This does not only bring confidence to the results obtained by our NGS solution but establishes the mutation specific test for family members. Sanger sequencing is also used occasionally with other variants reported in the statement. In the case of variant of uncertain significance (VUS) we do not recommend risk stratification based on the genetic finding. Furthermore, in the case VUS we do not recommend use of genetic information in patient management or genetic counseling. For some cases Blueprint Genetics offers a special free of charge service to investigate the role of identified VUS.

We constantly follow genetic literature adapting new relevant information and findings to our diagnostics. Relevant novel discoveries can be rapidly translated and adopted into our diagnostics without delay. These processes ensure that our diagnostic panels and clinical statements remain the most up-to-date on the market.

Find more info in Support

Choose an analysis method

$ $ 1400
$ $ 1000
$ $ 1600
Total $
Order now

ICD & CPT codes

CPT codes

SEQ 81479
DEL/DUP 81479


ICD codes

Commonly used ICD-10 codes when ordering the Neuro-Ophthalmology Panel

ICD-10 Disease
H55.00 Nystagmus
H49.40 Progressive external ophthalmoplegia
H47.20 Optic atrophy

Accepted sample types

  • EDTA blood, min. 1 ml
  • Purified DNA, min. 5μg
  • Saliva (Oragene DNA OG-500 kit)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

Note that we do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue.

Subscribe to our newsletter