Comprehensive Pulmonology Panel

Summary
Is a 114 gene panel that includes assessment of non-coding variants.

In addition, it also includes the maternally inherited mitochondrial genome.
Is ideal for clinically complex patients with pulmonary involvement.

Analysis methods
  • PLUS
Availability
4 weeks
Number of genes
114
Test code
PU0701
Panel tier
Tier 2
CPT Code *
81222, 81223, 81302, 81304, 81403, 81404 x2, 81405 x3, 81406 x6, 81407, 81408, 81479, 81460, 81465
* The CPT codes provided are based on AMA guidelines and are for informational purposes only. CPT coding is the sole responsibility of the billing party. Please direct any questions regarding coding to the payer being billed.

Summary

The Blueprint Genetics Comprehensive Pulmonology Panel (test code PU0701):

Read about our accreditations, certifications and CE-marked IVD medical devices here.

ICD Codes

Refer to the most current version of ICD-10-CM manual for a complete list of ICD-10 codes.

Sample Requirements

  • Blood (min. 1ml) in an EDTA tube
  • Extracted DNA, min. 2 μg in TE buffer or equivalent
  • Saliva (Please see Sample Requirements for accepted saliva kits)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

We do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue. In addition, if the patient is affected with a hematological malignancy, DNA extracted from a non-hematological source (e.g. skin fibroblasts) is strongly recommended.

Please note that, in rare cases, mitochondrial genome (mtDNA) variants may not be detectable in blood or saliva in which case DNA extracted from post-mitotic tissue such as skeletal muscle may be a better option.

Read more about our sample requirements here.

Inherited pulmonary diseases are a group of lung disorders with variable clinical presentation and frequently have significant phenotypic overlap. The diseases can affect the airways (e.g. cystic fibrosis and primary ciliary dyskinesia), parenchyma (pulmonary fibrosis, Birt Hogg Dube syndrome and tuberous sclerosis) and vasculature of the lung. Rare lung diseases generally affect individuals from birth through about age 60. They are in many cases serious, chronic, and can be devastating. Once properly diagnosed, they often require expensive, long-term treatments. The most common genetic respiratory disease is cystic fibrosis. Misdiagnosis can lead to inappropriate care and an increased risk of complications. Genetic diagnostics by NGS offers a rapid approach to correct clinical diagnosis and early and personalized intervention.

Genes in the Comprehensive Pulmonology Panel and their clinical significance

To view complete table content, scroll horizontally.

Gene Associated phenotypes Inheritance ClinVar HGMD
ABCA3 Rajab interstitial lung disease with brain calcifications 2, Surfactant metabolism dysfunction, pulmonary AR 11 287
ARHGEF1 Idiopathic bronchiectasis, Immunodeficiencies with antibody defects AR 1
C11ORF70 Primary ciliary dyskinesia AR 5
CCDC39 Ciliary dyskinesia AR 39 47
CCDC40 Ciliary dyskinesia AR 33 43
CFTR Cystic fibrosis, Congenital bilateral absence of the vas deferens AD/AR 518 1803
CHAT Myasthenic syndrome, congenital AR 24 73
CHRNA1 Myasthenic syndrome, congenital AD/AR 28 35
CHRNB1 Myasthenic syndrome AD/AR 11 11
CHRND Myasthenic syndrome AD/AR 18 26
CHRNE Myasthenic syndrome AD/AR 48 134
COLQ Myasthenic syndrome, congenital AR 23 67
CSF2RA#* Surfactant metabolism dysfunction, pulmonary XL 2 17
CSF2RB Surfactant metabolism dysfunction, pulmonary, 5 AR 2 6
DKC1 Hoyeraal-Hreidarsson syndrome, Dyskeratosis congenita XL 48 74
DNAAF1 Ciliary dyskinesia AR 19 38
DNAAF2 Ciliary dyskinesia AR 13 6
DNAH1 Spermatogenic failure 18, Ciliary dyskinesia, primary, 37 AR 15 32
DNAH11* Ciliary dyskinesia AR 66 130
DNAH5 Ciliary dyskinesia AR 140 197
DNAH9 Primary ciliary dyskinesia AR 6
DNAI1 Ciliary dyskinesia AR 17 35
DNAI2 Ciliary dyskinesia AR 19 6
DNAL1 Ciliary dyskinesia AR 3 1
EDN3 Hirschsprung disease, Central hypoventilation syndrome, congenital, Waardenburg syndrome AD/AR 7 21
EFEMP2 Cutis laxa AR 14 16
ELMOD2 Familial idiopathic pulmonary fibrosis AD/AR
ELN Cutis laxa, Supravalvular aortic stenosis AD 78 113
FAM111B* Hereditary Fibrosing Poikiloderma with Tendon Contracture, Myopathy, and Pulmonary Fibrosis, Lung cancer, familial, susceptibilty to AD 7 7
FBLN5 Cutis laxa, Macular degeneration, age-related AD/AR 13 22
FLCN Birt-Hogg-Dube syndrome, Pneumothorax, primary spontaneous AD 154 210
FOXF1 Alveolar capillary dysplasia with misalignment of pulmonary veins AD 10 102
GAS2L2 Primary ciliary dyskinesia AR 3
GAS8 Ciliary dyskinesia, primary, 33 AR 4 6
GLRA1 Hyperekplexia AD/AR 39 69
HPS1* Hermansky-Pudlak syndrome AR 28 55
HPS4 Hermansky-Pudlak syndrome AR 16 22
ITGA3 Interstitial lung disease with nephrotic syndrome and epidermolysis bullosa AR 6 11
LTBP4 Cutis laxa with severe pulmonary, gastrointestinal, and urinary abnormalities AR 10 17
MCIDAS Primary ciliary dyskinesia AR 4 3
MECP2 Angelman-like syndrome, Autism, Rett syndrome, Encephalopathy, Intellectual developmental disorder XL 506 1039
MT-ATP6 Neuropathy, ataxia, and retinitis pigmentosa, Leber hereditary optic neuropathy, Ataxia and polyneuropathy, adult-onset, Cardiomyopathy, infantile hypertrophic, Leigh syndrome, Striatonigral degeneration, infantile, mitochondrial Mitochondrial 19
MT-ATP8 Cardiomyopathy, apical hypertrophic, and neuropathy, Cardiomyopathy, infantile hypertrophic Mitochondrial 4
MT-CO1 Myoglobinuria, recurrent, Leber hereditary optic neuropathy, Sideroblastic anemia, Cytochrome C oxidase deficiency, Deafness, mitochondrial Mitochondrial 17
MT-CO2 Cytochrome c oxidase deficiency Mitochondrial 8
MT-CO3 Cytochrome c oxidase deficiency, Leber hereditary optic neuropathy Mitochondrial 9
MT-CYB Mitochondrial 69
MT-ND1 Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes, Leber hereditary optic neuropathy, Leber optic atrophy and dystonia Mitochondrial 21
MT-ND2 Leber hereditary optic neuropathy, Mitochondrial complex I deficiency Mitochondrial 6
MT-ND3 Leber optic atrophy and dystonia, Mitochondrial complex I deficiency Mitochondrial 7
MT-ND4 Leber hereditary optic neuropathy, Leber optic atrophy and dystonia, Mitochondrial complex I deficiency Mitochondrial 11
MT-ND4L Leber hereditary optic neuropathy Mitochondrial 2
MT-ND5 Myoclonic epilepsy with ragged red fibers, Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes, Leber hereditary optic neuropathy, Mitochondrial complex I deficiency Mitochondrial 19
MT-ND6 Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes, Oncocytoma, Leber hereditary optic neuropathy, Leber optic atrophy and dystonia, Mitochondrial complex I deficiency Mitochondrial 16
MT-RNR1 Deafness, mitochondrial Mitochondrial 3
MT-RNR2 Chloramphenicol toxicity/resistance Mitochondrial 2
MT-TA Mitochondrial 4
MT-TC Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes Mitochondrial 3
MT-TD Mitochondrial 1
MT-TE Diabetes-deafness syndrome, Mitochondrial myopathy, infantile, transient, Mitochondrial myopathy with diabetes Mitochondrial 5
MT-TF Myoclonic epilepsy with ragged red fibers, Nephropathy, tubulointerstitial, Encephalopathy, mitochondrial, Epilepsy, mitochondrial, Myopathy, mitochondrial, Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes Mitochondrial 7
MT-TG Mitochondrial 3
MT-TH Mitochondrial 4
MT-TI Mitochondrial 7
MT-TK Myoclonic epilepsy with ragged red fibers, Leigh syndrome Mitochondrial 5
MT-TL1 Cytochrome c oxidase deficiency, Myoclonic epilepsy with ragged red fibers, Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes, Diabetes-deafness syndrome, Cyclic vomiting syndrome, SIDS, susceptibility to Mitochondrial 14
MT-TL2 Mitochondrial multisystemic disorder, Progressive external ophthalmoplegia, Mitochondrial Myopathy, Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes Mitochondrial 5
MT-TM Leigh syndrome, Mitochondrial multisystemic disorder Mitochondrial 1
MT-TN Progressive external ophthalmoplegia, Mitochondrial multisystemic disorder Mitochondrial 3
MT-TP Mitochondrial 2
MT-TQ Mitochondrial multisystemic disorder Mitochondrial 2
MT-TR Encephalopathy, mitochondrial Mitochondrial 2
MT-TS1 Myoclonic epilepsy with ragged red fibers, Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes Mitochondrial 10
MT-TS2 Mitochondrial multisystemic disorder Mitochondrial 2
MT-TT Mitochondrial 5
MT-TV Hypertrophic cardiomyopathy (HCM), Leigh syndrome, Mitochondrial multisystemic disorder, Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes Mitochondrial 3
MT-TW Leigh syndrome, Myopathy, mitochondrial Mitochondrial 8
MT-TY Mitochondrial multisystemic disorder Mitochondrial 4
NAF1 AD 2
NF1* Watson syndrome, Neurofibromatosis, Neurofibromatosis-Noonan syndrome AD 1157 2901
NKX2-1 Thyroid cancer, nonmedullary, Choreoathetosis, hypothyroidism, and neonatal respiratory distress, Chorea, hereditary benign AD 27 137
NME8 Ciliary dyskinesia AR 1 6
PARN* Pulmonary fibrosis and/or bone marrow failure, Dyskeratosis congenita AD/AR 15 29
PHOX2B Central hypoventilation syndrome, congenital, Neuroblastoma, susceptiblity to, Neuroblastoma with Hirschsprung disease AD 11 86
PIH1D3 Ciliary dyskinesia, primary, 36 XL 2 12
POLD1 Colorectal cancer, Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome, Idiopathic bronchiectasis, Immunodeficiency AD/AR 3 31
RAPSN Myasthenic syndrome, congenital AR 26 58
RET Hirschsprung disease, Central hypoventilation syndrome, congenital, Pheochromocytoma, Medullary thyroid carcinoma, Multiple endocrine neoplasia AD 122 407
RSPH3 Ciliary dyskinesia, primary, 32 AR 7 5
RSPH4A Ciliary dyskinesia AR 18 24
RSPH9 Ciliary dyskinesia AR 8 12
RTEL1 Pulmonary fibrosis and/or bone marrow failure, Dyskeratosis congenita AD/AR 58 51
SCN4A Hyperkalemic periodic paralysis, Myotonia, potassium-aggravated, Paramyotonia congenita, Myasthenic syndrome, congenital, Normokalemic potassium-sensitive periodic paralysis AD/AR 57 126
SCNN1A Pseudohypoaldosteronism, Bronchiectasis with or without elevated sweat chloride AD/AR 10 44
SCNN1B Liddle syndrome, Pseudohypoaldosteronism, Bronchiectasis with or without elevated sweat chloride AD/AR 19 47
SERPINA1 Alpha-1-antitrypsin deficiency AR 49 80
SFTPA1 Idiopathic pulmonary fibrosis AD 2
SFTPA2 Pulmonary fibrosis, idiopathic AD 2 5
SFTPB Surfactant metabolism dysfunction, pulmonary AR 5 28
SFTPC Surfactant metabolism dysfunction, pulmonary AD 8 82
SLC34A2 Pulmonary alveolar microlithiasis AR 5 19
SLC6A5 Hyperekplexia AD/AR 15 33
SLC7A7 Lysinuric protein intolerance AR 55 67
SMPD1 Niemann-Pick disease AR 110 249
STAT3 Hyper-IgE recurrent infection syndrome, Autoimmune disease, multisystem, infantile onset AD 47 152
STK36 Primary ciliary dyskinesia AR 5
STRA6 Microphthalmia, syndromic, Microphthalmia, isolated, with coloboma AR 22 33
TERC Aplastic anemia, Pulmonary fibrosis and/or bone marrow failure, telomere-related, Dyskeratosis congenita AD 42 73
TERT Aplastic anemia, Pulmonary fibrosis and/or bone marrow failure, telomere-related, Dyskeratosis congenita AD/AR 48 156
TINF2 Revesz syndrome, Dyskeratosis congenita AD 25 42
TMEM173 STING-associated vasculopathy, infantile-onsent (SAVI) AD/AR 4 10
TSC1 Lymphangioleiomyomatosis, Tuberous sclerosis AD 177 372
TSC2 Lymphangioleiomyomatosis, Tuberous sclerosis AD 396 1195
ZEB2* Mowat-Wilson syndrome AD 154 287
#

The gene has suboptimal coverage (means <90% of the gene’s target nucleotides are covered at >20x with mapping quality score (MQ>20) reads), and/or the gene has exons listed under Test limitations section that are not included in the panel as they are not sufficiently covered with high quality sequence reads.

*

Some, or all, of the gene is duplicated in the genome. Read more.

The sensitivity to detect variants may be limited in genes marked with an asterisk (*) or number sign (#). Due to possible limitations these genes may not be available as single gene tests.

Gene refers to the HGNC approved gene symbol; Inheritance refers to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR), mitochondrial (mi), X-linked (XL), X-linked dominant (XLD) and X-linked recessive (XLR); ClinVar refers to the number of variants in the gene classified as pathogenic or likely pathogenic in this database (ClinVar); HGMD refers to the number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD). The list of associated, gene specific phenotypes are generated from CGD or Mitomap databases.

Non-coding variants covered by Comprehensive Pulmonology Panel

To view complete table content, scroll horizontally.

Gene Genomic location HG19 HGVS RefSeq RS-number
ABCA3 Chr16:2333457 c.3863-98C>T NM_001089.2 rs189077405
ABCA3 Chr16:2358644 c.1112-20G>A NM_001089.2 rs746701685
ABCA3 Chr16:2376495 c.-26-2A>G NM_001089.2
CCDC39 Chr3:180365042 c.1363-11A>G NM_181426.1
CCDC39 Chr3:180367928 c.1167+1261A>G NM_181426.1 rs577069249
CCDC39 Chr3:180367941 c.1167+1248A>G NM_181426.1
CFTR Chr7:117119654 c.-495C>T NM_000492.3 rs397507565
CFTR Chr7:117119797 NM_000492.3
CFTR Chr7:117119900 c.-249G>C NM_000492.3
CFTR Chr7:117119984 c.-165G>A NM_000492.3 rs145483167
CFTR Chr7:117120064 c.-85C>G NM_000492.3
CFTR Chr7:117120115 c.-34C>T NM_000492.3 rs756314710
CFTR Chr7:117120325 c.53+124T>C NM_000492.3
CFTR Chr7:117179040 c.870-1113_870-1110delGAAT NM_000492.3 rs397508809
CFTR Chr7:117182041 c.1117-26_1117-25delAT NM_000492.3 rs397508159
CFTR Chr7:117199500 c.1393-18G>A NM_000492.3 rs397508199
CFTR Chr7:117218381 c.1585-9412A>G NM_000492.3 rs397508229
CFTR Chr7:117227774 c.1585-19T>C NM_000492.3 rs778457306
CFTR Chr7:117227921 c.1679+34G>T NM_000492.3 rs767901668
CFTR Chr7:117229521 c.1680-886A>G NM_000492.3 rs397508266
CFTR Chr7:117229524 c.1680-883A>G NM_000492.3
CFTR Chr7:117229530 c.1680-877G>T NM_000492.3 rs397508261
CFTR Chr7:117243855 c.2908+19G>C NM_000492.3 rs370683572
CFTR Chr7:117246713 c.2909-15T>G NM_000492.3 rs397508455
CFTR Chr7:117246840 c.2988+33G>T NM_000492.3
CFTR Chr7:117251609 c.3140-26A>G NM_000492.3 rs76151804
CFTR Chr7:117251619 c.3140-16T>A NM_000492.3 rs767232138
CFTR Chr7:117251624 c.3140-11A>G NM_000492.3
CFTR Chr7:117266272 c.3469-1304C>G NM_000492.3
CFTR Chr7:117267864 c.3717+40A>G NM_000492.3 rs397508595
CFTR Chr7:117280015 c.3718-2477C>T NM_000492.3 rs75039782
CFTR Chr7:117282680 c.3873+33A>G NM_000492.3 rs397508622
CFTR Chr7:117288374 c.3874-4522A>G NM_000492.3
CFTR Chr7:117308395 c.*1233T>A NM_000492.3
CHRNE Chr17:4804936 c.501-16G>A NM_000080.3
CHRNE Chr17:4806452 c.-94G>A NM_000080.3
CHRNE Chr17:4806453 c.-95G>A NM_000080.3
CHRNE Chr17:4806454 c.-96C>T NM_000080.3 rs748144899
DKC1 ChrX:153991099 c.-142C>G NM_001363.3 rs199422241
DKC1 ChrX:153991100 c.-141C>G NM_001363.3
DKC1 ChrX:153993704 c.85-15T>C NM_001363.3
EDN3 Chr20:57875743 c.-125G>A NM_000114.2
EDN3 Chr20:57875849 c.-19C>A NM_000114.2 rs375594972
ELN Chr7:73480347 c.2272+20C>G NM_001278939.1
ITGA3 Chr17:48151801 c.1383-11T>A NM_005501.2
NF1 Chr17:29422055 c.-273A>C NM_001042492.2
NF1 Chr17:29422056 c.-272G>A NM_001042492.2
NF1 Chr17:29431417 c.60+9031_60+9035delAAGTT NM_001042492.2
NF1 Chr17:29475515 c.61-7486G>T NM_001042492.2
NF1 Chr17:29488136 c.288+2025T>G NM_001042492.2
NF1 Chr17:29508426 c.587-14T>A NM_001042492.2
NF1 Chr17:29508428 c.587-12T>A NM_001042492.2
NF1 Chr17:29510334 c.888+651T>A NM_001042492.2
NF1 Chr17:29510427 c.888+744A>G NM_001042492.2
NF1 Chr17:29510472 c.888+789A>G NM_001042492.2
NF1 Chr17:29527428 c.889-12T>A NM_001042492.2
NF1 Chr17:29530107 c.1260+1604A>G NM_001042492.2
NF1 Chr17:29533239 c.1261-19G>A NM_001042492.2
NF1 Chr17:29534143 c.1392+754T>G NM_001042492.2
NF1 Chr17:29540877 c.1393-592A>G NM_001042492.2
NF1 Chr17:29542762 c.1527+1159C>T NM_001042492.2
NF1 Chr17:29548419 c.1642-449A>G NM_001042492.2 rs863224655
NF1 Chr17:29549489 c.*481A>G NM_001128147.2
NF1 Chr17:29553439 c.2002-14C>G NM_001042492.2
NF1 Chr17:29554225 c.2252-11T>G NM_001042492.2
NF1 Chr17:29556025 c.2410-18C>G NM_001042492.2
NF1 Chr17:29556027 c.2410-16A>G NM_001042492.2
NF1 Chr17:29556028 c.2410-15A>G NM_001042492.2
NF1 Chr17:29556031 c.2410-12T>G NM_001042492.2
NF1 Chr17:29556839 c.2851-14_2851-13insA NM_001042492.2
NF1 Chr17:29557267 c.2991-11T>G NM_001042492.2
NF1 Chr17:29558777 c.3198-314G>A NM_001042492.2
NF1 Chr17:29563299 c.3974+260T>G NM_001042492.2
NF1 Chr17:29577082 c.4110+945A>G NM_001042492.2
NF1 Chr17:29580296 c.4173+278A>G NM_001042492.2
NF1 Chr17:29588708 c.4578-20_4578-18delAAG NM_001042492.2
NF1 Chr17:29588715 c.4578-14T>G NM_001042492.2
NF1 Chr17:29654479 c.5269-38A>G NM_001042492.2
NF1 Chr17:29656858 c.5610-456G>T NM_001042492.2
NF1 Chr17:29657848 c.5812+332A>G NM_001042492.2 rs863224491
NF1 Chr17:29661577 c.5813-279A>G NM_001042492.2
NF1 Chr17:29664375 c.6428-11T>G NM_001042492.2
NF1 Chr17:29664618 c.6642+18A>G NM_001042492.2
NF1 Chr17:29676126 c.7190-12T>A NM_001042492.2
NF1 Chr17:29676127 c.7190-11_7190-10insGTTT NM_001042492.2
NF1 Chr17:29685177 c.7971-321C>G NM_001042492.2
NF1 Chr17:29685481 c.7971-17C>G NM_001042492.2
NF1 Chr17:29685665 c.8113+25A>T NM_001042492.2
PARN Chr16:14724045 c.-165+2C>T NM_001134477.2
RAPSN Chr11:47469717 c.193-15C>A NM_005055.4
RAPSN Chr11:47470715 c.-199C>G NM_005055.4
RAPSN Chr11:47470726 c.-210A>G NM_005055.4 rs786200905
RET Chr10:43572670 c.-37G>C NM_020975.4 rs751005619
RET Chr10:43572680 c.-27C>G NM_020975.4
RET Chr10:43582162 c.73+9385_73+9395delAGCAACTGCCA NM_020975.4 rs368137511
RET Chr10:43606948 c.1522+35C>T NM_020975.4 rs377130948
RET Chr10:43612192 c.2284+13C>T NM_020975.4
RET Chr10:43612198 c.2284+19C>T NM_020975.4
RET Chr10:43613947 c.2392+19T>C NM_020975.4 rs778745375
SCNN1A Chr12:6484670 c.-55+1G>C NM_001038.5
SERPINA1 Chr14:94854894 c.-5+2dupT NM_000295.4
SERPINA1 Chr14:94854896 c.-5+1G>A NM_000295.4 rs775786225
SMPD1 Chr11:6415102 c.1341-21_1341-18delAATG NM_000543.4 rs1312743513
TERC Chr3:169482870 n.-22C>T NR_001566.1
TERC Chr3:169482906 NR_001566.1
TERC Chr3:169482948 n.-100C>G NR_001566.1 rs199422256
TERC Chr3:169483086 NR_001566.1 rs199422255
TERT Chr5:1271334 c.2383-15C>T NM_198253.2 rs574645600
TERT Chr5:1295161 c.-57A>C NM_198253.2
TSC1 Chr9:135800306 c.363+668G>A NM_000368.4
TSC2 Chr16:2098067 c.-30+1G>C NM_000548.3 rs587778004
TSC2 Chr16:2106052 c.600-145C>T NM_000548.3
TSC2 Chr16:2107460 c.848+281C>T NM_000548.3 rs45517132
TSC2 Chr16:2110656 c.976-15G>A NM_000548.3 rs45517150
TSC2 Chr16:2127477 c.2838-122G>A NM_000548.3
TSC2 Chr16:2138031 c.5069-18A>G NM_000548.3 rs45484794
ZEB2 Chr2:145274987 c.-69-1G>A NM_014795.3
ZEB2 Chr2:145274988 c.-69-2A>C NM_014795.3

Test Strengths

The strengths of this test include:

  • CAP accredited laboratory
  • CLIA-certified personnel performing clinical testing in a CLIA-certified laboratory
  • Powerful sequencing technologies, advanced target enrichment methods and precision bioinformatics pipelines ensure superior analytical performance
  • Careful construction of clinically effective and scientifically justified gene panels
  • Some of the panels include the whole mitochondrial genome (please see the Panel Content section)
  • Our Nucleus online portal providing transparent and easy access to quality and performance data at the patient level
  • ~2,000 non-coding disease causing variants in our clinical grade NGS assay for panels (please see ‘Non-coding disease causing variants covered by this panel’ in the Panel Content section)
  • Our rigorous variant classification scheme
  • Our systematic clinical interpretation workflow using proprietary software enabling accurate and traceable processing of NGS data
  • Our comprehensive clinical statements

Test Limitations

The following exons are not included in the panel as they are not sufficiently covered with high quality sequence reads: *CSF2RA* (NM_001161530:9). Genes with suboptimal coverage in our assay are marked with number sign (#) and genes with partial, or whole gene, segmental duplications in the human genome are marked with an asterisk (*) if they overlap with the UCSC pseudogene regions. Gene is considered to have suboptimal coverage when >90% of the gene’s target nucleotides are not covered at >20x with mapping quality score (MQ>20) reads. The technology may have limited sensitivity to detect variants in genes marked with these symbols (please see the Panel content table above).

This test does not detect the following:

  • Complex inversions
  • Gene conversions
  • Balanced translocations
  • Some of the panels include the whole mitochondrial genome but not all (please see the Panel Content section)
  • Repeat expansion disorders unless specifically mentioned
  • Non-coding variants deeper than ±20 base pairs from exon-intron boundary unless otherwise indicated (please see above Panel Content / non-coding variants covered by the panel).

This test may not reliably detect the following:

  • Low level mosaicism in nuclear genes (variant with a minor allele fraction of 14.6% is detected with 90% probability)
  • Stretches of mononucleotide repeats
  • Low level heteroplasmy in mtDNA (>90% are detected at 5% level)
  • Indels larger than 50bp
  • Single exon deletions or duplications
  • Variants within pseudogene regions/duplicated segments
  • Some disease causing variants present in mtDNA are not detectable from blood, thus post-mitotic tissue such as skeletal muscle may be required for establishing molecular diagnosis.

The sensitivity of this test may be reduced if DNA is extracted by a laboratory other than Blueprint Genetics.

For additional information, please refer to the Test performance section.

The genes on the panel have been carefully selected based on scientific literature, mutation databases and our experience.

Our panels are sectioned from our high-quality, clinical grade NGS assay. Please see our sequencing and detection performance table for details regarding our ability to detect different types of alterations (Table).

Assays have been validated for various sample types including EDTA-blood, isolated DNA (excluding from formalin fixed paraffin embedded tissue), saliva and dry blood spots (filter cards). These sample types were selected in order to maximize the likelihood for high-quality DNA yield. The diagnostic yield varies depending on the assay used, referring healthcare professional, hospital and country. Plus analysis increases the likelihood of finding a genetic diagnosis for your patient, as large deletions and duplications cannot be detected using sequence analysis alone. Blueprint Genetics’ Plus Analysis is a combination of both sequencing and deletion/duplication (copy number variant (CNV)) analysis.

The performance metrics listed below are from an initial validation performed at our main laboratory in Finland. The performance metrics of our laboratory in Marlborough, MA, are equivalent.

Performance of Blueprint Genetics high-quality, clinical grade NGS sequencing assay for panels.

Sensitivity % (TP/(TP+FN) Specificity %
Single nucleotide variants 99.89% (99,153/99,266) >99.9999%
Insertions, deletions and indels by sequence analysis
1-10 bps 99.2% (7,745/7,806) >99.9999%
11-50 bps 99.13% (2,524/2,546) >99.9999%
Copy number variants (exon level dels/dups)
1 exon level deletion (heterozygous) 100% (20/20) NA
1 exon level deletion (homozygous) 100% (5/5) NA
1 exon level deletion (het or homo) 100% (25/25) NA
2-7 exon level deletion (het or homo) 100% (44/44) NA
1-9 exon level duplication (het or homo) 75% (6/8) NA
Simulated CNV detection
5 exons level deletion/duplication 98.7% 100.00%
Microdeletion/-duplication sdrs (large CNVs, n=37))
Size range (0.1-47 Mb) 100% (25/25)
     
The performance presented above reached by Blueprint Genetics high-quality, clinical grade NGS sequencing assay with the following coverage metrics
     
Mean sequencing depth 143X
Nucleotides with >20x sequencing coverage (%) 99.86%

Performance of Blueprint Genetics Mitochondrial Sequencing Assay.

Sensitivity % Specificity %
ANALYTIC VALIDATION (NA samples; n=4)
Single nucleotide variants
Heteroplasmic (45-100%) 100.0% (50/50) 100.0%
Heteroplasmic (35-45%) 100.0% (87/87) 100.0%
Heteroplasmic (25-35%) 100.0% (73/73) 100.0%
Heteroplasmic (15-25%) 100.0% (77/77) 100.0%
Heteroplasmic (10-15%) 100.0% (74/74) 100.0%
Heteroplasmic (5-10%) 100.0% (3/3) 100.0%
Heteroplasmic (<5%) 50.0% (2/4) 100.0%
CLINICAL VALIDATION (n=76 samples)
All types
Single nucleotide variants n=2026 SNVs
Heteroplasmic (45-100%) 100.0% (1940/1940) 100.0%
Heteroplasmic (35-45%) 100.0% (4/4) 100.0%
Heteroplasmic (25-35%) 100.0% (3/3) 100.0%
Heteroplasmic (15-25%) 100.0% (3/3) 100.0%
Heteroplasmic (10-15%) 100.0% (9/9) 100.0%
Heteroplasmic (5-10%) 92.3% (12/13) 99.98%
Heteroplasmic (<5%) 88.9% (48/54) 99.93%
Insertions and deletions by sequence analysis n=40 indels
Heteroplasmic (45-100%) 1-10bp 100.0% (32/32) 100.0%
Heteroplasmic (5-45%) 1-10bp 100.0% (3/3) 100.0%
Heteroplasmic (<5%) 1-10bp 100.0% (5/5) 99,997%
SIMULATION DATA /(mitomap mutations)
Insertions, and deletions 1-24 bps by sequence analysis; n=17
Homoplasmic (100%) 1-24bp 100.0% (17/17) 99.98%
Heteroplasmic (50%) 100.0% (17/17) 99.99%
Heteroplasmic (25%) 100.0% (17/17) 100.0%
Heteroplasmic (20%) 100.0% (17/17) 100.0%
Heteroplasmic (15%) 100.0% (17/17) 100.0%
Heteroplasmic (10%) 94.1% (16/17) 100.0%
Heteroplasmic (5%) 94.1% (16/17) 100.0%
Copy number variants (separate artifical mutations; n=1500)
Homoplasmic (100%) 500 bp, 1kb, 5 kb 100.0% 100.0%
Heteroplasmic (50%) 500 bp, 1kb, 5 kb 100.0% 100.0%
Heteroplasmic (30%) 500 bp, 1kb, 5 kb 100.0% 100.0%
Heteroplasmic (20%) 500 bp, 1kb, 5 kb 99.7% 100.0%
Heteroplasmic (10%) 500 bp, 1kb, 5 kb 99.0% 100.0%
The performance presented above reached by following coverage metrics at assay level (n=66)
Mean of medians Median of medians
Mean sequencing depth MQ0 (clinical) 18224X 17366X
Nucleotides with >1000x MQ0 sequencing coverage (%) (clinical) 100%
rho zero cell line (=no mtDNA), mean sequencing depth 12X

The target region for each gene includes coding exons and ±20 base pairs from the exon-intron boundary. In addition, the panel includes non-coding and regulatory variants if listed above (Non-coding variants covered by the panel). Some regions of the gene(s) may be removed from the panel if specifically mentioned in the ‘Test limitations” section above. If the test includes the mitochondrial genome the target region gene list contains the mitochondrial genes. The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. Our pipeline is streamlined to maximize sensitivity without sacrificing specificity. We have incorporated a number of reference population databases and mutation databases including, but not limited, to 1000 Genomes Project, gnomAD, ClinVar and HGMD into our clinical interpretation software to make the process effective and efficient. For missense variants, in silico variant prediction tools such as  SIFT, PolyPhen,MutationTaster are used to assist with variant classification. Through our online ordering and statement reporting system, Nucleus, ordering providers have access to the details of the analysis, including patient specific sequencing metrics, a gene level coverage plot and a list of regions with suboptimal coverage (<20X for nuclear genes and <1000X for mtDNA) if applicable. This reflects our mission to build fully transparent diagnostics where ordering providers can easily visualize the crucial details of the analysis process.

We provide customers with the most comprehensive clinical report available on the market. Clinical interpretation requires a fundamental understanding of clinical genetics and genetic principles. At Blueprint Genetics, our PhD molecular geneticists, medical geneticists, and clinical consultants prepare the clinical statement together by evaluating the identified variants in the context of the phenotypic information provided in the requisition form. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals regardless of whether they have formal training in genetics.

Variant classification is the cornerstone of clinical interpretation and resulting patient management decisions. Our classifications follow the ACMG guideline 2015.

The final step in the analysis is orthogonal confirmation. Sequence and copy number variants classified as pathogenic, likely pathogenic, and variants of uncertain significance (VUS) are confirmed using bi-directional Sanger sequencing or by orthogonal methods such as qPCR/ddPCR when they do not meet our stringent NGS quality metrics for a true positive call.

Our clinical statement includes tables for sequencing and copy number variants that include basic variant information (genomic coordinates, HGVS nomenclature, zygosity, allele frequencies, in silico predictions, OMIM phenotypes, and classification of the variant). In addition, the statement includes detailed descriptions of the variant, gene, and phenotype(s) including the role of the specific gene in human disease, the mutation profile, information about the gene’s variation in population cohorts, and detailed information about related phenotypes. We also provide links to the references, abstracts, and variant databases used to help ordering providers further evaluate the reported findings if desired. The conclusion summarizes all of the existing information and provides our rationale for the classification of the variant.

Identification of pathogenic or likely pathogenic variants in dominant disorders or their combinations in different alleles in recessive disorders are considered molecular confirmation of the clinical diagnosis. In these cases, family member testing can be used for risk stratification. We do not recommend using variants of uncertain significance (VUS) for family member risk stratification or patient management. Genetic counseling is recommended.

Our interpretation team analyzes millions of variants from thousands of individuals with rare diseases. Our internal database and our understanding of variants and related phenotypes increases with every case analyzed. Our laboratory is therefore well-positioned to re-classify previously reported variants as new information becomes available. If a variant previously reported by Blueprint Genetics is re-classified, our laboratory will issue a follow-up statement to the original ordering healthcare provider at no additional cost, according to our latest follow-up reporting policy.